[3000字]智能制造论文范例精编4篇
【写作参考】阿拉题库漂亮网友为您精选的“[3000字]智能制造论文范例精编4篇”文档资料,供您写作参考阅读之用,希望对您有所帮助,喜欢就复制下载吧!
智能制造论文3000字1
摘要:智能制造作为信息化技术衍生的产物,是我国工业制造的发展方向,受到了全社会的广泛关注与各行业的重视。为了满足现代社会日渐增长的生产需求,也为了推动我国工业制造的可持续发展,有必要将传统的工业制造与现代科学技术密切结合,实现我国制造业的成功转型升级,提升工业制造水平。基于此,本文将立足智能制造时代背景,对机械设计及自动化技术的应用进行分析,并对机械设计及自动化技术的发展方向展开讨论。
关键词:智能制造;机械设计;自动化技术
1引言
机械设计作为我国工业制造行业的重要经济来源,除了能够为我国的工业制造带来强大的技术支持基础外,同时也能全面提升国民生产效率。而随着时代的发展,越来越多更先进的智能化技术应用到传统的机械设计制造行业中,有效改善了以往劳动力投入过大、劳动强度过高等不足,实现了机械设计的自动化与智能化制造[1]。在如今的智能制造时代背景下,我国近年来的机械设计行业对自动化技术的研究取得了长足进步,不过相对于技术起步更早且更加成熟的发达国家而言还存在一定差距,所以有必要探明我国机械设计及自动化技术的未来发展方向,持续推动我国工业制造行业的健康发展。
2自动化技术在机械设计的实际应用
智能制造背景下的机械设计会应用到智能集成化技术、智能柔性自动化技术、虚拟自动化技术等,涉及的技术内容极为丰富。下文便以应用自动化技术的多功能调试台控制系统为例,对其在机械设计中的实际应用展开分析[2]。
多功能调试台
利用多功能调试台构建的稳定支撑试验平台,具备多旋转功能,基本用在继电保护设备的组装与调试生产中。将智能自动化技术应用其中,能够显著缩小电机体积与重量,进而提升设备运行的安全稳定性。此外,在对多功能调试台的自动化技术设计中加入自动化控制程序(PLC),便可实现对系统性能的实时化试验与调试,保障系统运行的整体可靠性。
基于多功能调试台的机械设计
采用了自动化技术的多功能调试台控制系统,将其应用在机械设计当中,主要借助于调试台的持续性升降功能,保证位于不一样高度的继电保护装置能够配备到位,并且能实现对功能的测试效果。在此过程中,应当全面分析系统故障检测及隔离保护功能。在多功能调试台控制系统的设计过程中,应采取多元化控制方式以及应用智能自动化技术,借助PLC编程逻辑控制,构建单片机控制体系,确保工业控制机能够控制到位[3]。在全方位考量控制要求之后,应构建多功能调试台控制系统,确保PLC控制模式能实现。多功能调试台控制系统的构建过程中,需要重视多模块的组建,其中包含控制、通信、检测及输出等模块,同时画出详细的系统构架图。该控制系统主要应用自动化检测技术对机械设计展开测量,分为直接测量与间接测量。其中,直接测量能够测得所设计机械设备的规格尺寸,结合参数变化达到控制机床技术模块的效果;而间接测量则是利用控制模块中的刀具去建立刀具部件运行机制,比如根据待测表面的差异,对待测装置的断续表层、平面等多项参数予以检测,具体如图1所示。我们以图1中的输出与检测两大主要模块举例,起初需要借助输出模块对伺服驱动电路进行分析,构建自动化编码与框架系统,并且预先设计故障预警电路,主要应用PLC输出接口对伺服驱动电路予以控制,同步传输电机转动的脉冲控制量,保证伺服电机的转动速度、转动方向更加精准。同时,还应构建起基于信息反馈的闭环控制机制以及智能自动化框架系统,保证框架的高度、水平度都能精准调位,对整个系统的故障内容予以分析。自动化技术在其中的应用能够实现对框架高度、水平度的合理控制,保证一旦系统发生故障,PLC仍然能够保证警报信号输出的正常[4]。此外便是检测模块,在该模块中包含位移与倾角两类传感器,PLC模拟量输入模块接口能够保证倾角传感器的信号正常传送,对位置闭环控制的参考量予以优化。立足设计全局视角来看,多功能调试台控制系统构建的是一种驱动方案设计体系,既能计算重要参数,确保旋转机构的合理性以及工作到位,同时也能避免过载情况发生。此外,还要重点考量驱动方案设计的所需因素,参考电机的体积、重量、功率等特性,构建负载旋转机构以及对驱动装置进行优化设计,构建具备框架大负载旋转机构的驱动装置,实现调整可回转装置组件及过渡件的效果,优选驱动电机且做好量化计算,比如对电机经由减速器且传送到丝杆力矩位置的驱动力进行计算,保证驱动系统一直具备较高的冗余度。
3智能制造背景下机械设计及自动化技术的发展方向
重视产品数据的收集与共享
在智能制造时代背景下,机械设计主要利用智能化手段完成,产品设计、制造与自动化技术之间的关系极为密切,因此在未来发展中需要提高对产品数据的收集与共享工作的重视度。一方面,利用智能系统对产品设计方法的合理性进行精准识别。对产品生产过程中产生的数据进行分析与模拟,形成资源共享平台,通过智能化识别,机械制造控制系统能够直接储存与设计、生产相关的数据,同时也能根据生产批次的规格要求去分析操作状态。如果生产过程中察觉出问题,在信号传感器的加持下会第一时间发出预警信号,那么机械设计工作人员则会能通过对设计数据的排查找出问题所在。另一方面,借助机电控制模块对产品质量进行分析,还可通过分析所采集的数据,对机器运行速度、生产状态展开全面检查,并且能通过模拟机械设计制造加工的过程,精准地判断出操作状态[5]。为了实现智能制造,需要高度重视产品设计制造与技术的结合,将智能数据共享中心设置为独立监控设备,在各类传感器的配置下做出动态化分析,然后借助网络技术对所采集的数据予以共享,方便机械设计参数的及时调整。
重视节能环保
随着科学技术与社会经济水平的不断提升,我国也逐渐迈进了经济与产业结构转型升级的关键时期。能源节约与环境保护现已成为企业实力的重要标准,尤其是在“碳中和”的时代背景下,企业要想实现健康的可持续发展,必定要在未来发展中不断改革升级,摈弃用牺牲环境换取经济效益的想法与做法。所以,在智能制造背景下,未来的机械设计及自动化技术发展要重视如下几点:其一,加强对新材料的研发,机械设计不仅要满足智能制造功能要求,而且要保证使用更加节能环保的材料;其二,做好机械设计制造过程中的噪音污染控制工作,尽量减少或舍弃噪音污染较大的机械设备;其三,要重视废弃设备的回收利用。机械设备在工作一段时间后会因为达不到生产要求而被淘汰,但其回收价值依旧较高,需要做好资源的二次利用。
重视人工智能的引入
人工智能一定是未来工业制造领域的发展趋势,能够完成机械设计、生产制造过程中的复杂程度较高的工作。另外,随着我国人口老龄化程度不断加深,人口红利逐渐消失,人工成本自然会不断提升,通过人工智能技术的引入能够冥想降低企业的生产成本,同时为产品质量提供更强大的保障。在机械设计领域,人工智能的引入需要注意如下几点:其一,机械设计方案中的不同部件生命周期同样需要展开智能化分析,通过大量方案的比较进行优选;其二,机械设计需要综合考量对产品性能提出的要求,尽量进行模块化设计;其三,机械设计过程中要关注产品使用寿命,关注可能需要拓展的模块与性能,方便产品今后在功能与网络方面的升级。
4结语
综上所述,智能制造作为工业制造的未来发展方向,应用自动化技术的机械设计生产不仅能够提升生产可控性,降低人为干预误差,同时也能收集到更多且精准的设计生产数据,实现设计制造的自动化与智能化。在今后的机械设计及自动化技术发展中,需要重点关注产品数据收集与共享、节能环保、人工智能的引入等方向。唯有将传统的机械设计及自动化技术与智能制造有机结合,才能促使我国机械制造行业焕发新的活力以及实现技术层面的突破,推动我国工业制造行业的健康发展。
参考文献:
[1]安仲举.智能机械设计制造自动化特点与发展趋势研究[J].中国设备工程,2020(06):25-27.
[2]刘金锋,朱钰萍,田桂中,王筱蓉.面向智能制造的机械制造工艺装备课程改革探讨[J].教育现代化,(08):46-48.
[3]蔡志容.智能制造时代机械设计制造及其自动化技术研究[J].内燃机与配件,2019(22):195-196.
[4]白剑森.机械设计制造及其自动化的发展方向分析[J].内燃机与配件,2020(08):226-227.
[5]李峰.智能制造背景下机械设计及自动化技术发展方向研究[J].农机使用与维修,2021(07):45-46.
智能制造论文3000字2
智能制造是一种可以让企业在研发、生产、管理、服务等方面变得更加“聪明”的生产方法,制造业企业要从自身发展的核心痛点出发,在合理的整体规划和顶层设计基础上,沿着智能制造要素→智能制造能力→智能制造系统的发展方向,分阶段且持续性的获取智能制造要素,建立、完善、扩展企业在研发设计、生产制造、物流仓储、订单获取、产品服务等各个环节的智能制造能力,最终形成完整、高效、科学的智能制造系统。
目前中国智能制造仍面临关键装备与核心零部件受制于人、中小企业难以融入智能制造浪潮、大部分企业缺少智能制造的文化内核等重大挑战,制造业企业要顺应趋势,提前规划,明确目标,关注网络协同制造、5G等新模式、新技术带来的新机遇,以“立足当前,着眼长远”的原则,分阶段、持续性地实施智能化转型。
智能制造的“何为”与“为何”
“何为”智能制造
企业实现生产、管理、服务、产品智能化的全新生产方式
“智能制造”这一概念最早由美国学者和在其著作《Manufacturing Intelligence》中出现,他们将智能制造定义为机器人应用制造软件系统技术、集成系统工程以及机器人视觉等技术,实行批量生产的系统性过程。工信部出台的《智能制造发展规划(2016-2020年)》中,将智能制造定义为基于新一代信息通信技术与先进制造技术深度融合,贯穿于设计、生产、管理、服务等制造活动的各个环节,具有自感知、自学习、自决策、自执行、自适应等功能的新型生产方式。
艾瑞认为,智能制造是通过新一代信息技术、自动化技术、工业软件及现代管理思想在制造企业全领域、全流程的系统应用而产生的一种全新的生产方式。智能制造的应用能够使制造业企业实现生产智能化、管理智能化、服务智能化与产品智能化。
智能制造的起源与演变
起源:数字化制造→成长:网络化制造→目标:智能化制造
智能制造代表着先进制造技术与信息化的融合,尽管概念提出至今仅30年的时间,但智能制造的起源可以追溯至上世纪中叶,其发展与演进可以大致分为三个阶段:从上世纪中叶到90年代中期的数字化制造,以计算、通讯和控制应用为主要特征;从上世纪九十年代中期发展至今的网络化制造,伴随着互联网的大规模普及应用,先进制造进入了以万物互联为主要特征的网络化阶段;当前,在大数据、云计算、机器视觉等技术突飞猛进的基础上,人工智能逐渐融入制造领域,先进制造开始步入以新一代人工智能技术为核心的智能化制造阶段。但受限于人工智能技术的发展水平与制造业应用尚未成熟,目前的“智能制造”还远未达到“自适应、自决策、自执行”的完全智能化阶段,智能化制造仍是未来的主要发展目标。
中国“为何”需要智能制造
智能制造是中国制造业转型升级、提质增效的必由之路
近年来,中国的经济发展已由高速增长阶段逐步转入高质量发展阶段,政府更加关注于优化经济结构、转换增长动力。制造业是供给侧结构性改革的主要领域,尽管制造业增加值在全国GDP总量中的比重呈下降态势,但以制造业为代表的实体经济才是中国经济高质量发展的核心支撑力量。2015-2016年,中国制造业增加值的同比增速仅为%和%,原料、土地、人力资源等生产要素成本的不断上涨使制造业本就不高的利润率很难提升。提高质量效益、转变生产方式是中国制造业必须要解决的问题,而发展智能制造正是中国制造由大到强的必由之路。
智能制造系统的构成要素
智能制造系统的基本构成
智能制造系统=自动化设备+智能“神经系统”
智能制造是一种可以让企业在研发、生产、管理、服务等方面变得更加“聪明”的方法,我们可以把制造智能化理解为企业在引入数控机床、机器人等生产设备并实现生产自动化的基础上,再搭建一套精密的“神经系统”。智能“神经系统”以ERP(企业资源计划系统)、MES(生产过程执行系统)等管理软件组成中枢神经,以传感器、嵌入式芯片、RFID标签、条码等组件为神经元,以PLC(可编程逻辑控制器)为链接控制神经元的突触,以现场总线、工业以太网、NB-IoT等通信技术为神经纤维。企业能够借助完善的“神经系统”感知环境、获取信息、传递指令,以此实现科学决策、智能设计、合理排产,提升设备使用率,监控设备状态,指导设备运行,让自动化生产设备如臂使指。
智能制造系统的整体架构
智能制造要素是构建智能制造系统的基本组成单位
中国制造业企业智能化路径分析
实现路径千差万别,总体思路可以总结
智能化之路——智造要素→智造能力→智能制造系统
制造业企业智能化不存在“放之四海而皆准”的普适路径。艾瑞认为,制造业企业实现智能化要从自身的核心痛点出发,在合理且有延续性的整体规划与顶层设计的基础上,沿着智能制造要素→智能制造能力→智能制造系统的发展方向,分阶段且持续性的获取智能制造要素,建立、完善、扩展企业在研发设计、生产制造、物流仓储、订单获取、产品服务等各个环节的“智造能力”,最终形成完整、高效、科学的智能制造系统。
本部分对制造业企业生产活动中各个环节的六种典型智能制造能力从预期收益、实施难度、成本下降、资金投入、时间跨度五个维度进行分析评价,并以此为基础提出智能化路径示例。
数字化设计
缩短研发周期、降低研发成本、对接制造环节
数字化设计是智能制造系统的源头,是企业实现数字化、智能化道路上必须要突破的关键点。制造业中的设计包括产品设计、工艺设计、工艺优化、样品制造、检测检验等一系列过程。传统的研发设计流程是以模块分立形式,按照顺序完成开发,产品开发周期长且质量得不到保证。而数字化设计借助计算机辅助设计软件(CAX)、三维设计与建模工具等技术能够赋予企业将研发过程全面数字化、模型化,实现研发设计流程的高度集成、协同与融合,大幅缩短产品开发周期,降低开发风险和开发费用。
目前CAX类软件在国内制造业企业中已有一定程度应用基础,但从发展趋势及与智能制造系统的契合程度来看,第三代产品设计语言MBD(基于模型的设计)技术将成为数字化设计的主武器,MBD的应用将打通数字化设计与数字化制造,使三维模型成为制造的唯一数据源,让产品模型在整个生命周期得到充分利用。
智能制造单元
提升设备使用率带动企业加快生产节奏,增加产出与效益
智能制造单元是针对离散加工现场,将一组能力相近的加工设备和辅助设备进行模块化、集成化、一体化的聚合,使其具备多品种少批量产品的生产输出能力。对于离散制造领域的中小型企业来说,打造智能制造单元是开启智能化道路行之有效的切入点,其最大的作用在于提升设备开动率,加快生产节奏,“简单粗暴”的通过增加产出来提升企业收益。
奇步自动化控制设备有限公司推出的“智造单元”是智能制造单元的成熟范式之一。“智造单元”是一种模块化的小型数字化工厂实践,整个单元由自动化模块、信息化模块和智能化模块三部分组成,以“最小的数字化工厂”实现企业在多品种小批量乃至单件自动化的生产智能化。
生产全过程数字化
打通数据→整合优化→互联互通→降本增效
生产全过程数字化是将“人、机、料、法、环”五个层面的数据连接、融合并形成一个完整的闭环系统,通过对生产全过程数据的采集、传输、分析、决策,优化资源动态配置,提升产品质量管控。生产全过程数字化需要企业在人员配备、自动化设备、设备连接、环境感知等各方面具备良好的基础,即前文中提到的智能“神经系统”包含的要素必须齐全。在此基础上,生产全过程数字化的重点工作是打通各种数据流,包括从生产计划到生产执行(ERP与MES)的数据流、MES与控制设备和监视设备之间的数据流、现场设备与控制设备之间的数据流。有条件的企业可以自主研发或委托开发生产数字化集成平台,将不同生产环节的设备、软件和人员无缝地集成为一个协同工作的系统,实现互联、互通、互操作。
智能物流仓储系统
让一切物理实体流动起来,节省空间、时间与人力资源
物流仓储是制造业中极为重要的一环,如果说通信网络是智能制造系统的神经纤维,那么物流仓储则可视为智能制造系统的血管。智能物流仓储系统的应用能够使原材料、辅助物料、在制品、制成品等物理对象在各个生产工序间顺畅流转,并通过提升仓库货位利用效率、提高仓储作业的灵活性与准确性、合理控制库存总量、降低物流仓储人员需求数量等方式大幅压缩物流仓储成本。
智能物流仓储系统尽管不直接参与产品的生产,但作为整个智能制造系统中的重要子系统,其组成架构也与之类似,分为设备层、操作层、企业层,设备层包括仓储设备、物流设备、识别设备;操作层由WMS、WCS、TMS等软件构成;企业层则对接ERP、CRM、SCM等管理软件的采购、计划、库存、发货等模块,融入总系统的闭环中。
大规模定制平台
打造向大规模定制转型的入口,提升品牌价值与用户粘性
销售是所有企业的核心业务之一,智能制造系统中的销售智能化除了应用CRM等软件管理销售业务外,更为重要的是在订单获取层面发挥作用。在当前个性化需求日益旺盛的环境下,企业通过建立定制平台,能够将用户提前引入到产品的设计、生产过程中,通过差异化的定制参数、柔性化的生产,使个性化需求得到快速实现,以此提升品牌价值,增加用户粘性。与之相匹配的,企业应将定制平台与智能制造系统中的研发设计、计划排产、制造执行等模块实现协同与集成,实现从线上用户定制方案,到线下柔性化生产的全定制过程;在企业后台建立个性化产品数据库,应用大数据技术对用户的个性化需求特征进行挖掘和分析,并反馈到研发设计部门,优化产品及工艺,基于用户需求新趋势开展研发活动。
产品远程运维服务
以智能化服务拓展商业模式,推动价值链向后延伸
智能制造视角下的产品服务是借助云服务、数据挖掘和智能分析等技术,捕捉、分析产品信息,更加主动、精准、高效的给用户提供服务,推动企业价值链向后延伸。远程运维服务即是典型的制造企业智能化服务模式,企业利用物联网、云计算、大数据等技术对生产并已投入使用的智能产品的设备状态、作业操作、环境情况等维度的数据进行采集、筛选、分析、储存和管理,基于上述数据的分析结果为用户提供产品的日常运行维护、预测性维护、故障预警、诊断与修复、运行优化、远程升级等服务。
远程运维服务可以有效降低设备故障率,提升设备使用率与使用寿命,既能减轻制造商的负担,又能显著提升产品价值。远程运维对于企业产品的智能化程度要求较高,产品必须配备开放的数据接口,具备数据采集、通信模块;企业还需建立远程运维服务前端平台与后端数据中心,采集产品数据并基于大数据分析与计算,向用户提供增值服务。
落地基石——整体规划与顶层设计
解决“我是谁,我在哪,我要干什么”三大问题
智能制造系统的整体规划与顶层设计是制造业企业正式踏上智能化道路的第一步,企业在这一环节要为“我是谁、我在哪、我要干什么”三大问题寻找答案:首先要明确“我是谁”,详细扫描企业自身的核心竞争力、运营情况、财务状况、人员配备、组织架构等基础条件;而后通过智能制造能力成熟度模型等工具进行智能程度自评与诊断,了解企业缺失的智能制造要素、已具备和尚未具备的智能制造能力,精准定位企业目前所处的智能化阶段,搞清楚“我在哪”;在回答了前两个问题的基础上,以企业发展的核心痛点为切入点,以获取关键“智造能力”为阶段性目标,以搭建完整、高效、科学的智能制造系统为发展方向,按照统一架构和统一标准规划设计智能制造系统总体实施方案及核心要素能力解决方案,确保企业在智能化之路上知道“我要干什么”。
智能化路径示例
破解“多品种、小批量”困局——智造单元+智能物流仓储
Alpha公司是一家生产发动机连杆的汽车配件厂商,随着业务的发展和客户的增加,Alpha公司的产品线不断拓展,生产车间由3个增加至10个。生产规模扩大、产品种类增加给Alpha公司带来了设备利用率不足、交货期难以保证、物料及在制品积压严重等一系列问题,亟需智能化转型来应对生产经营中的重重挑战,保持竞争活力。
智能化路径示例
以产品差异化突出重围——数字化设计+大规模定制平台
Beta公司是一家机械键盘生产厂商,近年来游戏市场的持续火爆带动机械键盘市场的新进玩家数量激增,为应对激烈的市场竞争,拓展商业模式,提升品牌价值,Beta公司准备由批量化生产向大规模定制模式转型。
智能化路径示例
抓住产品后市场的广阔空间——PLM+智能远程运维服务
Gamma公司是一家主要从事高端农业机械研发制造的大型装备制造企业,Gamma公司在企业战略探索过程中,确立了以研发生产智能化产品、为客户提供智能远程运维服务作为企业的未来发展方向。
中国智能制造的挑战与发展趋势
中国智能制造面临的挑战
关键装备、核心零部件受制于人,短期内难以实现国产替代
我国近90%的芯片、70%的工业机器人、80%的高档数控机床和80%以上的核心工业软件依赖进口。这造成国内制造业企业智能化改造成本居高不下,严重制约我国智能制造的整体进展。以工业机器人为例,中国已经连续六年成为工业机器人第一消费大国,2017年中国工业机器人销量达到了万台,全球占比达到36%。而其中仅有万台是由国内工业机器人制造商生产,国产率仅为%,比2016年的31%还下降了近6个百分点。由此可见,中国制造业企业在提升自动化水平时优先选取的是选购国外品牌的工业机器人,国产机器人尽管发展较快,但短时间内难以满足智能制造的需求。
小微企业难以融入智能化发展浪潮
在全国规模以上工业企业中,%的企业属于小型企业,规模以下(年主营业务收入2000万元以下)尚有200余万家小微企业。广大小微企业是制造业的根基,其智能化水平很大程度上影响着中国智能制造工程的实施效果。然而从《中国制造2025》战略提出以来,由于自有资金不足、信息化基础薄弱、缺乏相关人才等多方面因素的影响,大部分中国制造业小微企业只能羡慕大企业申请智能制造试点示范项目、围观大企业开展轰轰烈烈的智能化改造,自己却难以融入智能制造的发展浪潮。相比于大中型企业,小微企业的智能化之路面临更大的试错成本和不可控风险,稍有不慎就会危及生存。
流程领域有望率先实现智能化
智能制造系统是一个覆盖设计、物流、仓储、生产、检测等生产全过程的极其复杂的巨系统,企业要搭建一个完整的智能制造系统,最困难也是最核心的部分就是生产过程数字化。尤其是对于生产工艺复杂、原材料及原器件种类繁多的离散制造领域,产品往往由多个零部件经过一系列不连续的工序装配而成,其过程包含很多变化和不确定因素,在一定程度上增加了离散型制造生产组织的难度和配套复杂性,要做到生产全程数字化、可视化、透明化殊为不易。
与离散领域显著不同的是,流程领域的生产流程本质上是连续的,被加工处理的工质不论是产生物理变化还是化学变化,其过程不会中断,而且往往是处于密闭的管道或容器中,生产工艺相对简单,生产流程清晰连贯,生产全过程数字化难度相对较低。流程领域企业接下来要做的是在全面贯通整合各阶段数据的基础上,运用人工智能的深度学习、强化学习(主要是动态规划方法)进行实时数据分析和实时决策,并进一步将智能系统延伸至供应链、生产后服务等各个环节,最终实现全面智能化。
供应链协同倒逼产业链上游企业“上马”智能制造
制造业企业智能化的动力本源是响应市场需求,这点在消费品制造领域尤为明显,乘用车、家电、3C、服装、医药、食品等直接面向消费者的制造业企业搭建智能制造系统的主要目的即是实现高度柔性生产,快速、准确地实现消费者对产品的个性化、定制化需求。如果我们把视角向上推,对于原材料工业和装备工业的企业而言,智能化浪潮前沿的消费品制造厂商即是他们的市场所在,要跟上客户多品种、小批量的生产节奏,就必然要大幅提升自身的产品创新能力、快速交货能力以及连续补货能力。快速变化的市场需求从消费端沿着产业链不断向上传导,下游企业生产方式的颠覆与创新迫使上游供应商融入智能化浪潮,智能制造倒逼机制就此形成。在这种倒逼机制的作用下,产业链上游企业要主动适应变化,实现柔性生产,基于供应商先期介入思维,通过网络协同制造确立竞争优势,否则将面临被市场淘汰的风险。
智能制造论文3000字3
摘要:当今社会,科学技术日新月异,许多东西都在不断的智能化、数字化。尤其是在科技的帮助下,机械制造业的发展,也是一次难得的机会。面对不断增长的新发展需求,推动我国机械设计制造企业的转型和升级是刻不容缓的。传统的机械设计与制造工艺已不适应时代发展的需要,以此为基础,实现数字化、智能化的发展,是目前和今后的发展趋势。本论文旨在对我国机械设计制造行业的发展趋势及未来的发展趋势作一简要的分析与讨论,了解其发展的必然性。
关键词:智能制造;时代背景;机械设计;技术研究
1.智能制造时代背景下机械设计技术研究的重要性
首先是程序设计:从机械设计的过程来看,其更重视产品设计、制造、到市场的整体设计。设计人员要从产品的设计、技术的设计、工程的设计、施工的整体设计,使设计的方法更具程序性。其次是系统性:从系统的角度来看,机械设计更多地是以系统工程的方式来解决问题,所以在设计时,要把各部件之间的关系紧密地联系起来,使之形成一个有机的整体,这样就可以最大限度地优化系统的运行,并使系统与外部的环境形成对应的关系。其次,创新:目前我国经济正处于转型、结构优化、发展动力转换的关键时期。在我国,由于缺乏有效的供应,许多关键设备、核心技术、高端产品都要依靠进口,甚至是“卡脖子”。要解决这个问题,必须加强科技创新,提升供应系统的质量。另外,采用机械式设计,可以减少前期的准备和细部工作,使设计者的工作效率得到极大的提升。
2.智能制造时代背景下机械设计特点
在机械设计制造的发展过程中,它的主要特点有:首先是人机结合。在机械设计生产中,必须运用人工智能技术,使其具有高效、自动、智能的特性,从而使推理、判断、预测等工作得以高效地进行。同时,人机结合可以使多种形式的智能混合系统得以形成,使人的主观能动性得到凸显,在工作人员的协作下,能够充分挖掘智能制造和加工设备的潜能。其次是自我学习与自我维持。机械设计制造的数字化和智能化能够使机械设计与生产的产品拥有自我学习、自我维护的能力。通过学习,可以不断地更新和完善整个知识体系,并对知识库中的错误信息进行过滤与删减,从而优化整个知识系统,为后期故障高效诊断、排除、修复打下基础。接下来就是自我组织。从机构的结构和运作模式来看,机械设计制造的数字化和智能化都是自我组织的,根据工作任务的需要,采用不同的组合式的控制系统,可以实现结构体系的最优。然后是部分为仿真处理。以汽车机械设计为例,运用数字化技术和智能化技术,建立了一个知识库,充分利用了设计师的多年积累,降低了设计的重复工作量,提高了设计的效率,缩短了研發的整体时间。通过建立汽车零部件的知识库,可以对汽车的关键部件、发动机、齿轮等关键部件的性能进行全面的分析,而使用者则可以通过用户界面来输入汽车的设计需求,使汽车的总体选型和功能设计工作能够得到高质量的实现。
3.智能制造时代背景下机械设计技术研究的应用
柔性数字化与智能化技术实际应用
对于柔性数字化和智能化技术,则是指在使用过程中,能够根据机械设计和生产状况而发生变化的数字化、智能化技术。通过对 FDM技术在机械设计和制造方面的应用进行了分析,发现其在机械设计制造领域中具有很强的灵活性和可变性,同时也可以运用数字化、智能化技术对生产进行采集、记录、处理各种突发事件,为以后的企业管理工作提供参考。
数字化与智能化技术的信息化应用
数字化和智能化技术是建立在信息技术的基础上,通过数字技术来实现自动化的,所以在未来的发展中,信息化技术是一个很有意义的课题。随着信息化技术的发展,信息化技术在各个领域得到了广泛的应用,人们可以利用信息化技术来获得相应的信息,并通过数据的传递、分析,从而提高企业的生产效率和产品质量。而在数字化、智能化技术的应用中,还必须收集、传输、分析生产过程中的信息,从而使机械设计与制造领域的信息化应用取得了显著的成果。
发挥数字化与智能化技术的集成化作用
在机械设计与制造领域中,数字与智能技术的结合也是一种综合性的技术,它可以提高设计制造能力,对各种复杂的机器进行加工,并对各种不同的设备和系统进行合理的分配,从而形成一个完整的生产体系,从而实现机器的生产制造过程,从而保证产品的质量符合应用的要求。在实践中,由于数字化、智能化技术具备分析的功能,可以通过对产品的生产过程进行分析,从而使机械的工艺过程得到改善。在集成方面,它可以将机械设备、制造、运营等多个生产环节连接起来,同时也可以通过生产计划的变化,实现对各系统的性能指标的调节。
虚拟认证技术的实际应用
在目前的信息化和智能化领域,虚拟身份验证是一个非常常见的专业术语。在机械产品设计过程中,由于不确定产品的性能和质量能否满足生产的要求,必须对产品进行检验,而虚拟验证技术则是通过数字仿真技术或者计算机模拟技术来实现产品的正常运行,并通过测试的结果来判定产品的质量,从而使产品能够进入市场。虚拟验证技术是将信息技术与数字、智能技术有机地结合起来,通过对制造工艺信息的分析,对实际生产状况进行预测,建立和完善 FMS。在工艺设计中,必须对产品进行充分的仿真,以确保所要加工的产品在该过程中得到最优的加工过程,从而减少生产成本,提高产品的质量。
数控技术的实际应用
随着我车综合国力的不断增强,生产产品的品质和性能也越来越高,以适应经济发展的需求。数控技术是当今世界上最重要的一项技术,它在机械设计和生产实际应用中占有举足轻重的地位。
结束语
总而言之,对机械设计制造数字化、智能化发展的研究,在实践中具有更大的价值和意义,既可以总结现有的机械设计制造技术,又可以根据现代发展的需要,对机械设计制造体系进行改进,从而达到创新发展的目的。目前,机械设计制造数字化与智能化发展的关键是:生产设计环境、数字化与智能化技术与专业人才的引进,要使机械设计制造的数字化与智能化发展具有可持续性,就要做到针对化系统设计,严格控制所需要注意的内容。
参考文献
[1]白金建.机械设计制造的数字化与智能化发展研究[J].工程建设与设计,2020(06):138-139.
[2]孙骞.机械设计制造技术与数字化智能化发展分析[J].湖北农机化,2019(23):25.
智能制造论文3000字4
1人工智能在汽车制造业中的应用
概述制造业是国家的经济命脉,而汽车制造又是战略性支柱产业,它包括了整车、各种零配件厂等生产商,也包括了各地经销企业和销售企业。近年来,我国汽车行业面临着前所未有的挑战,原材料、生产、物流成本上涨、利润下降,以及国际经济形势的影响。因此,汽车企业可以运用具有智能分析功能的商务智能系统,通过分析历史数据快捷、及时地输出各类报告,预测未来的客户需求和销售趋势,在宏观上为企业管理人员提供决策依据。计算机人工智能技术发展到了今天,已经开始使用庞大的知识库来有效地取代人类器官或机构的记忆方法,近些年来很多的专家决策系统在考虑一定规则的基础上对人类的诊断和经验上的分析都能够做出很好的判断,甚至处于主导地位。这个系统可以很好地利用知识库,并从中挖掘出我们想要的问题答案、成功地寻找到其中的关联性,并提取相应的模式等。而实际上,这样的专家系统已经在很多领域都有了非常不错的应用,帮助很多企业在很短的时间内就做出相应的生产计划、调度计划、运输计划等,非常有效率,而且可以大大地增加收益,并很好地控制企业的人力成本。我国工业机器人是从20世纪80年代开始起步。经过二十年余年的努力已经形成了一些具有竞争力的工业机器人研究机构和企业。先后研发出弧焊、点焊、装配、搬运、注塑、冲压、喷漆等工业机器人。近几年,我国工业机器人及含工业机器人的自动化生产线相关产品的年产销额已突破十亿元。目前国内市场年需求量在3000台左右,年销售额在20亿元以上。统计数据显示中国市场上工业机器人总共拥有量近万台,占全球总量的%,其中完全国产工业机器人行业内规模比较大的前三家工业机器人企业,行业集中度占30%左右。其余都是从日本、美国、瑞典、德国、意大利等20多个国家引进的。国产工业机器人目前主要以国内市场应用为主,年出口量为100台左右,年出口额为亿以上。多年来我国汽车零部件生产一直是手工焊、专机焊占据焊接生产的主导地位、劳动强度大、作业环境恶劣、焊接质量不易保证,而且生产的柔性也很差,无法适应现代汽车生产的需要。
搬运机器人在汽车制造业中应用
汽车桥箱类零件具有精度高、加工工序多、形状复杂、重量重的特点。为提高其加工精度及生产效率,各重型汽车生产厂家纷纷采用数控加工中心来加工此类零部件。而在使用数控加工中心加工工件时,要求工件在工作台上具有非常高的定位精度,且需要保证每次上料的一致性。由于人工上料此类的工件具有劳动强度高、上料精度不好控制等缺点现在正逐步被工业机器人或专机进行上下料所取代。工业机器人具有重复定位精度高、可靠性高、生产柔性化、自动化程度高等、突出的优势,与人工相比,能够大幅度提高生产效率和产品质量,与专机相比具有可实现生产的柔性化、投资规模小等特点。机器人智能化自动搬运系统作为减速器壳体加工的重要生产环节,虽然已经在国内重型汽车厂内取得成功的应用,但依然尚未普及。在国家经济建设飞速发展的进程中,重型载重汽车的生产能力及生产力水平亟待有一个质的飞跃,而工业机器人即是提升生产力水平的强力推进器。
焊接机器人在汽车制造业中的应用
汽车行业的发展水平,代表了一个国家的综合技术水平,汽车工业的发展将会带动其他行业的发展。各厂商为了在日渐激烈的竞争中立于不败之地,必须率先实现焊接自动化。因此,今后除了如汽车、摩托车这样的大批量生产行业。一些产品多样化的企业,为了提高焊接质量,也将会考虑使用焊接机器人,如钢结构等行业,与此同时,对焊接机器人的要求也必然会逐步提高,如说对焊道的自动跟踪系统的需求会逐步加大等。作为焊接机器人和焊接机的专业生产厂家,OTC公司将继续为提高中国的高速、高效、自动化焊机做出自己的贡献。对于在汽车工业中的点焊应用来说,目前已广泛采用电驱动的伺服焊枪。日本丰田公司已决定将这种技术作为标准来装备其日本国内和海外的所有点焊机器人。
装配机器人在汽车制造业中的应用
在国内外各大汽车公司装配生产线上被广泛采用的装配机器人。一方面使汽车装配自动化水平大大提高,目前,国外某些大批量生产的轿车的装配自动化程度已达50%~65%。另一方面,有效地减轻了工人的劳动强度,提高了装配质量并明显地提高了生产率。在汽车整车装配中,机器人不仅用于挡风玻璃的密封济涂覆、安装和车轮备胎、仪表盘总成、后悬梁、车门、蓄电池等部件的安装。
喷涂机器人在汽车制造业中的应用
喷涂机器人在汽车制造业中可喷涂形态复杂的汽车工件而且生产效率和很高。多用于汽车车体的喷涂作业,如喷漆、喷釉等。除了上述机器人以外,汽车制造业中应用的机器人还有用于特殊加工的激光加工机器人用于部件形状测量、装配检查和产品缺陷检查的检测机器人,抑制尘埃粒子大小及数量的水切割机器人和净化机器人等。
2人工智能在汽车制造业中的进展分析
随着中国汽车工业的迅猛发展,机器人在先进汽车制造中的重要性也越来越凸显。机器人的产品应用广泛,覆盖焊接、物料搬运、装配、喷涂、精加工、拾料、包装、货盘堆垛、机械管理等领域。在汽车行业的应用主要分为以下五大部分。车身系统中,采用虚拟仿真等手段,主要针对车身覆盖件不断开发出新的标准化、模块化解决方案,动力总成系统中,提供了涵盖汽车传动系统核心部件,发动机、变速箱和传动轴的全套装配测试系统。在冲压自动化系统方面从卷材与堆垛到零件的码垛,从提供控制系统到企业ERP,从设计到生产支持与效率优化,拥有全面的工程能力,涂装自动化系统方面,以高柔性高精度的喷涂机器人来帮助客户提升涂装质量,减少生产废料,而在焊接自动化系统中,机器人比较典型的应用是电阻点焊、电弧焊,其最新一代机器人配套提供一系列高度人性化的软件工具。汽车工业的最大特点是产量大,生产节拍快,产品一致化程度高。消费者对汽车质量要求越来越高,是促使机器人应用越来越普遍的一个重要原因。机器人本身只是集装箱里的一个货物,随机器人的设备功能越来越精细,客户的思维在这时候逐渐走向成熟,在采购时不再单单考虑某生产工位的瓶颈,而更多地考虑到长期战略因素,如维护成本加入的高低,长期投资回报是否划算,服务涵盖地域是否广泛,响应是否及时,全球技术支持能力有多强,中期后期不同阶段解决问题的能力有多大等等。这时,产品本身的价格和意义相对弱化而长期的价值越发凸显。
3结束语
人类智能主要包括三个方面——“感知能力”、“思维能力”和“行为能力”。而人工智能是指由人类利用人脑特有的智力表现制造出来的“机器”所表现出来的智能。人工智能主要包括“感知能力”、“思维能力”和“行为能力”。人工智能在汽车制造工业方面的应用体现在问题求解,逻辑推理,自然语言理解,自动程序设计,专家系统等方面,这些方面就体现了自动化的特征,表达了一个共同的主题,即提高机械人类意识能力,强化控制自动化,因此人工智能在汽车制造领域将会大有作为。