《圆的认识》教学设计【推荐4篇】
【阅读指引】阿拉题库网友为您分享整理的“《圆的认识》教学设计【推荐4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
圆的认识教学设计【第一篇】
教学目标
1、使学生在观察、操作、交流中认识圆的各部分名称与感受圆的基本特征,会用圆
规画指定大小的圆;能应用圆的知识解释生活中的现象。
2、活动中进一步积累认识图形的学习经验,增强空间观念,发展数学思考。
3、进一步体验图形与生活的联系,感受平面图形的学习价值,提高数学学习
的兴趣和学好数学的信心。
重点难点
1、认识圆的各部分名称。
2、感受圆的基本特征。
3、会用圆规画指定大小的圆。
教学难点:应用圆的知识解释生活中的现象。
教学准备:课件、各种不同的含有圆形的实物、剪刀、直尺、圆规。
教学过程
教学例1。
(一)感知生活中的圆。听,一滴雨水滴在平静的水面上,荡起一层层涟漪,看,是什么形状?
出示图片,问:这些物体上也都有圆,谁来指一指。生活中哪些地方还能看到圆?
圆在生活中随处可见,扮演着重要角色。有必要进一步研究——圆
(二)自主画圆。先请你想办法画出一个圆,并在小组里交流你是用什么画的?
(三)交流感受。你觉得圆和以前学过的平面图形有什么不同?
二、圆规画圆,认识圆的各部分名称。
教学例2。
(一)圆规画圆。
1、认识圆规。如果要画一个更大、更小或指定大小的圆,借助你手里物品上的圆还行吗?得有一个能调节大小的画圆工具——圆规。谁能给大家介绍介绍它?
2、尝试画圆。你能试着用圆规画一个圆吗?试试看。(师同步在黑板上画圆)
3、展示作品,归纳画法。
(1)展示完美作品。问:你是怎样用圆规画圆的?课件出示画圆步骤:
①把圆规的两脚分开,定好两脚间的距离;
②把有针尖的一脚固定在一点上;
③把装有笔尖的一只脚旋转一周。
(2)展示问题作品。强调画圆时的注意点。(定点,定长)
4、规范画圆。如果让你重新画一个圆,有信心画得更好吗?要让全班同学画的圆一样大,该怎么办呢?(脚距?厘米)
(二)认识圆的各部分名称。
1、圆心。师:画圆时,针尖固定的这一点,在圆的什么位置?你猜这一点叫什么?(板书:圆心)通常用大写字母O表示。(生标O)
2、半径。你能在圆内画一条线段表示圆规两脚间的距离吗?试一试。(指名板演)
小组交流:你是从哪画到哪的?(辨别圆内、圆上、圆外)
其实,连接圆心和圆上任意一点的线段是圆的半径,通常用小写字母r表示。板书:半径,r。(生标r)刚才画的圆半径是几厘米?如果要求画一个半径5厘米的圆,圆规两脚间的距离应为多少?
3、直径。
你能在圆内画一条线段将这个圆平均分成两份吗?画画看。(指名板演)。画好后在小组内说说你是怎样画的?
像这样通过圆心并且两端都在圆上的线段是圆的直径,通常用小写字母d表示。板书:直径,d。(生标d)刚才画的圆直径是几厘米?如果要求画一个直径5厘米的圆,圆规脚距应定为多少?(厘米)。
4、练一练第1题。(课件出示)(以毫米作单位,要精确。)
三、合作探究,揭示圆的特征。
教学例3。
我们认识了圆心、半径、直径,其实,关于半径和直径还有许多奥秘呢,一起来探索好吗?
(一)合作探究:出示例3
师:先任意画一个圆,把它剪下来。(2分钟够不够?)
示:画一画,量一量,折一折,在小组里讨论:
(1)在同一个圆里可以画多少条半径?多少条直径?(课件反馈)
(2)在同一个圆里半径的长度都相等吗?直径呢?
(3)在同一个圆里半径与直径有什么关系?(课件反馈)
(4)圆是轴对称图形吗?它有几条对称轴?(对折引伸)
(二)汇报。(略)根据学生汇报板书。无数条,都相等,d=2r,r=
(三)你还有什么发现?在小组里交流。(你觉得对折时的折痕就是圆的什么?直径所在的直线就是圆的对称轴。)
五、回顾总结,赏析提升。
(一)通过这节课的学习,你有哪些收获?
(二)视频欣赏。后问:圆在建筑物中,艺术品中被广泛运用,大自然中也随处可见圆的身影。圆美吗?板书:圆
圆心(O)
同圆中半径(r)——无数条,分别都相等,d=2rr=d
直径(d)
作业实践活动
(四)练习:1.判断。
2、练习十七第1题。(说说是怎样想、怎样算的)。
3、练习十七第2题。(提醒:要在圆中标出相关条件。)
四、拓展延伸,感受生活中的数学。
请大家看动画片,高兴不?
为什么车轮要做成圆形?车轴要装在哪儿?
《圆的认识》教学设计【第二篇】
教学目的:
1.认识圆,知道圆各部分的名称,知道同一圆内半径和直径的特征。
2.掌握圆的特征,理解在同圆内直径和半径的相互关系,能根据这种关系求圆的直径和半径。
3.初步学会用圆规画圆。
4.培养观察、分析、抽象、概括等思维能力和初步的空间观念;学会用数学知识解释生活中的实际问题。
教学重点:圆的各部分名称及各部分之间的关系
教学难点:圆的特征
教学圆规
学具准备:圆规、纸片、剪刀、彩笔、直尺
教学过程:
一、 生活中找圆,导入新课
师:对于圆,同学们一定不会感到陌生吧?生活中,你们在哪见过圆形。
师:其实,在生活中随处可见圆状物体。中秋圆月、硬币等都是圆形
师:有人说,因为有了圆,我们的世界才变得如此美妙而神奇。今天这节课,就让我们一起走进圆的世界,去探寻其中的奥秘,好吗?
二、 操作、探究,自主认识圆的特征
1. 师:刚才我们看了这么多的圆,你们想不想把它画下来啊?
师:平时,你们是怎么画圆的啊?
师:比较一下,你觉得哪种方法更好啊?为什么?
师:大家都觉得用圆规画方便,那么,怎么利用圆规来画圆啊?请大家自己试试,遇到问题时,再请教无声的老师,看看它能给你什么提示。
让一位同学边示范边说步骤。(显示画圆的步骤)指出在画圆时的注意点。
再让同学们多画几个圆。
2. 把自认为画的最好的圆剪下来。
师:拿出你的圆,对折一下,打开;再对折,再打开;反复几次。你发现了什么?
师在学生回答的基础上总结:这些折痕相交于一点,这一点就用圆规画圆时针尖固定的一点。我们把这一点叫做圆心。用字母O来表示。
老师在黑板上表示出圆心,让学生标出自己圆上的圆心。
3. 我们)阿拉文库●(已经认识了圆心,如果我们在圆上任意取一点,连接圆心和这点,这条线段我们把它叫做半径。用字母r来表示。(边说边在圆上表示出来)
让学生在自己的圆上标示出半径,再让一位学生上黑板表示。
指点怎样量圆的半径的长度
师:在这个圆上,你能画出几条半径来?他们的长度怎样。
让学生自己探究发现,可以同桌、小组之间探讨。
老师在学生回答的基础上总结板书
4.我们再把圆拿出来,看看上面还有什么奥秘。
我们在折圆时,每条折痕都通过什么?它的两个端点在哪里?
谁来说说,这是一条怎样的折痕?
我们把这条线段叫做圆的直径,用字母d来表示。请你在你的圆上画出你这个圆的直径。一人板演,说说直径是怎么来的。
我们怎样测量它的长度呢?
我们找出了圆的直径,它是否和半径一样也有这样的规律呢?请你们自己按我们研究半径的方法研究直径。
老师在学生回答的基础上总结板书
5. 完成“练一练”第1题
展示讲评,说说怎样想的。
6. 学到这里,你对圆还想说什么吗?
可先让学生在同桌、小组之间讨论一下。再汇报,并说说是怎么想的。
根据学生的汇报,总结演示半径直径的关系。
三、 联系生活,拓展运用
1. 口答“练习二十四”第1、2题
在其中讲解半径与圆的大小的关系
2. 如果你是设计师,你会把车轮设计成什么形状?
说说你的理由。
为什么不设计成其他形状?
四、 学生自己总结
师:同学们,刚才我们一起研究了圆,现在请你闭上眼睛,回忆一下我们的学习的过程,整理一下你的学习收获。睁开眼睛,你能介绍一下你所认识的圆吗?
教后反思:
多少年来,在孩子们的心目中,在教师们的课堂里,数学一直与定理、法则、记忆、运算、冷峻、机械等联系在一起,难学难教、枯燥乏味一直成为学生学习数学的绊脚石。如何让学生在轻松和谐的环境下学习数学知识,这就成了我们教学中最为关注的问题。
圆的认识是在学生初步认识圆以后进行教学的,对于大多数学生来说,虽然已经初步认识过圆,但对于建立正确的圆的概念以及掌握圆的特征来说还是比较困难的。一开始我就从学生的生活出发,从生活中感知圆,形成圆的初步认识,画圆就顺理成章,而且比较多种方法认识到用圆规画圆的普遍性。让学生试着用圆规画圆,有困难时再看书,向书本学习。比硬性让学生看书后画圆,更尊重学生,也更富有启发性。画圆之后,让学生共同概括规律,是从感性到理性的一种提高,是十分必要的。
从感性认识到理性认识的升华,单靠学生讨论是完不成的,关键时刻,还需要教师系统的引导和讲解。因此在介绍圆各部分名称时,由老师带领着认识,当然也是在动手操作中感受圆的各部分名称。在学生操作的过程中已经积累了很多的潜在的意识,这时,老师只用稍微点拨一下,老师所要的内容学生就脱口而出。教学过程中,充分放手让学生参与知识的形成过程,让他们自己去发现、去猜想、去验证、去讨论、去合作。
当然在教学过程中我也发现了还需改进的地方,在个别环节的处理上还欠细致,前后时间的安排上也不是很好。还有,漠视了数学本身的文化背景,漠视了浸润在数学发展演变过程中的人文背景。如何兼顾知识与技能的教学,如何使我们的课堂活中有实,实中见活,这是我们每个老师值得深思的问题。
圆的认识教学设计【第三篇】
教学目标:
1.结合生活实际,通过观察、操作等活动,认识圆及圆的特征;认识半径、直径,理解同一圆中直径与半径的关系。
2.初步学会用圆规画圆,培养学生的作图能力。
3.结合具体情境,体验数学与日常生活的密切联系,能用圆的知识来解释生活中的简单现象,解决一些简单的实际问题。
教学重点:认识圆的圆心、半径和直径,学会用圆规画圆的方法。
教学难点:归纳同一圆内直径和半径的特征。
教具准备:圆规、直尺、多媒体课件等。
学具准备:各种圆形实物、圆规、直尺、圆形纸片等。
教学过程
一、导入新课
老师提问:同学们,你们知道八月十五是什么节日,这一天我们都做些什么?
老师引出:十五的月亮和月饼都是圆形。
老师提问:生活中还有哪些物体是圆形的?
幻灯片展示生活中其他的圆形物体。
引入圆的认识
二、探索新知
1、教师让学生拿出课前准备的圆形纸片,说说你是怎么做到的。
2、认识圆的。各部分名称。
老师引导:请大家将自己做的圆对折,打开,再换个方向对折,再打开,反复折几次,你发现了什么?
幻灯片放映折的过程。
学生发现:折痕都相交于一点。
幻灯片给出圆心:这些折痕相交于圆中心的一点,这一点叫做圆心,用字母O表示。
老师引导:请大家选择一条折痕,沿折痕画下里,分析这条线段有什么特点?
学生发现:过圆心,两个端点在圆上。
幻灯片给出直径:通过圆心并且两端都在圆上的线段叫做直径,用字母d表示。
老师引导:从圆心向圆上任一点画一条线段,这是直径吗?它有什么特点?
学生发现:不是,它的一个端点是圆心,另一个在圆上。
幻灯片给出半径:连接圆心和圆上任意一点的线段叫做半径,用字母r表示。
巩固练习:在一个圆中找出它的直径和半径。
3、探索同一个圆内直径、半径的特征及它们之间的长度关系。
幻灯片给出:
在同一个圆里,你能画多少条半径?量一量这些半径都相等吗?
在同一个圆里,你能画多少条直径?量一量这些直径都相等吗?
在同一个圆里,直径和半径的长度有什么关系?
学生探索,给出:
无数条半径,都相等;
无数条直径,都相等;
直径是半径的两倍。
老师归纳推到:d=2r即r=d/2
4、圆规和直尺画圆。
幻灯片给出“不以规矩,不成方圆”。
学生齐读,回答规“矩指”的是什么?
老师引导:认识圆规。
学生自学:课本57页怎样才能既准确又方便地画出一个圆?分组完成幻灯片展示的尝试题!
老师巡查,指导学生完成任务。
学生指出:画圆的基本步骤,这个过程中需要注意的地方。
老师总结圆的画法:1、定半径;2、定圆心;3、旋转一周
幻灯片动画展示如何画一个半径是2cm的圆!
三、课堂练习
幻灯片给出:
1.判断:
(1)在同一个圆内只可以画100条直径。()
(2)所有的圆的直径都相等。()
(3)两端都在圆上的线段叫做直径。()
(4)等圆的半径都相等。()
2.选择题:
(1)画圆时,圆规两脚间的距离是()。
A.半径长度B.直径长度
(2)从圆心到()任意一点的线段,叫半径。
A.圆心B.圆外C.圆上
(3)通过圆心并且两端都在圆上的()叫直径。
A.直径B.线段C.射线
学生依次回答,能够进行改错。
四、学有所用
用今天学习的圆的知识去解释一些生活现象
幻灯片给出:
1.车轮为什么做成圆形的,车轴应安装在哪里?
2.如果车轮做成正方形的、三角形的,我们坐上去会是什么感觉呢?
学生讨论回答。
五、课堂小结
学生总结本节课所学得知识。
《圆的认识》教学设计【第四篇】
一、教学目标
1.引导学生在观察、画圆、测量等活动中感受并发现圆的有关特点,知道什么是圆心、半径和直径,能用圆规画指定大小的圆。
2.在活动中,感受圆与其它图形的区别,沟通它们的联系,获得对数学美的丰富体验,提升学生对数学文化的认同。
二、教学线索
(一)在活动中整体感知
1.思考:如何从各种平面图形中摸出圆?
2.操作并体会:圆与其它图形有怎样的区别?在交流中整体感知圆的特征。
(二)在操作中丰富感受
1.交流:圆规的构造。
2.操作:学生尝试画圆,交流中归纳用圆规画圆的一般方法。
3.体会(学生第二次画圆):如果方法正确,为什么用圆规画不出其它的曲线图形?
4.引导(教师示范画圆):使学生将思维聚焦于圆规两脚之间的距离,体会到圆规两脚距离的恒等,恰是“圆之所以为圆”的内在原因。
(三)在交流中建构认识
1.引导:引导学生将上述距离画下来,由此揭示圆心及半径,进而介绍各自的字母表示。
2.思考:半径有多少条、长度怎样,你是怎么发现的?
3.概括:介绍古代数学家的相关发现,并与学生的发现作比较。
4.类比:学生尝试猜直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。
5.沟通:圆的内部特征与外部形象之间具有怎样的有机联系?
(四)在比较中深化认识
1.比较:正三角形、正方形、正五边形……中类似等长的“径”各有多少条?圆的半径又有多少条?
2.沟通:这些正多边形与圆这一曲线图形之间又有着怎样的内在联系?
(五)在练习中形成结构
1.寻找:给定的圆中没有标出圆心,半径是多少厘米?
2.想象:半径不同,圆的大小会怎样?圆的大小与什么有关?
3.猜测:不用圆规,还可能怎样画出一个圆?在交流中进一步丰富学生对半径、直径之间关系的认识。
4.沟通:用圆规如何画出指定大小的圆?
(六)在拓展中深化体验
1.渗透:在与直线图形的对比中,揭示圆的旋转不变性。
2.介绍:呈现直线图形旋转后的情形,再一次引导学生感受圆与直线图形的联系,体会圆与旋转的内在关联,丰富对圆这一曲线图形内在美感的认识。