实用倍数的特征课后反思 的倍数特征教学反思(精彩5篇)
【写作参考】一篇好的范文往往能让您的写作事半功倍,下面是由阿拉题库网友为您分享的“实用倍数的特征课后反思 的倍数特征教学反思(精彩5篇)”优质范例,供您写作参考之用,轻松写作,远离加班熬夜,希望以下内容对您有所帮助,喜欢就下载支持吧!
倍数的特征课后反思【第一篇】
《3的倍数和特征》一课是在学生自主探究2、5的倍数的特征的基础上进一步学习,我从学生的已有基础出发,把复习和导入有机结合起来,通过2、5的倍数特征的复习,设置了“陷阱”,引导学生进行猜想3的倍数的特征可能是什么,从而引发认知冲突,激发学生的求知欲望,经历新知的产生过程。
一、引发猜想,产生冲突。
前一课时,学生在发现2、5的倍数特征时,都是从个位上研究起的,所以在复习旧知时,我也特意强调了这一点。接下来我引导学生猜想3的倍数特征是什么时,不少学生知识迁移,提出:个位上是3、6、9的数应该是3的倍数;3的倍数都是奇数。提出猜想,当然需要验证,很快就有学生在观察百数表后提出问题:个位上是3、6、9的数只是有些是3的位数,有些不是3的倍数;有些偶数也是3的倍数,而有些奇数却不是3的倍数。学生的第一猜想被自己否决了。既然没有这么明显的特征,那么在百数表里找出3的倍数,不少学生就开始了繁杂的计算,这个环节我给了他们时间慢慢去算,用意在于体会这种计算的不方便,从而去想有没有更好的'方法去判断一个数是否是3的倍数。
二、自主探究,建构特征。
找3的倍数的特征是本节课的难点,我处理这个难点时力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,始终为学生创造宽松的学习氛围,让学生自主探索并掌握找一个3的倍数的特征的方法,引导学生在充分的动口、动手、动脑中自主获取知识。
在完成100以内的数表中找出所有3的倍数后,我引导学生观察发现3的倍数的个位可以是0~9中任何一个数字,要判断一个数是不是3的倍数不能和判断2、5的倍数一样只看个位,打破了学生的认知平衡,然后我提出到底什么样的数才是3的倍数这一问题。这个问题的解决需要借助计数器,于是我给学生准备了简易计数器,让学生多次拨数后,观察算珠的个数有什么共同的特点。反应比较快的学生就有了发现:所用的算珠个数都是3的倍数。在学生提出这个猜想后,全班学生再一次进行验证第二个猜想,这个验证也是在突破难点,学生在验证中掌握难点。同时,我也让学生对比了之前所用的方法,体验这个新方法的快捷与简便,让学生的印象更深刻。这个教学环节在教师的引导下克服困难,解决了力所能及的问题,达到了新的平衡,开发了学生的创新潜能。
在教学过程中让学生自主探索,虽然用了很多时间,但我认为学生探索的比较充分,学生的收获会更多。
三、巩固内化,拓展提高。
在上述教学过程中,虽然每个同学只操作了一两次,但是通过学生之间的合作交流,在教师的引导下,学生经历了一个典型的通过不完全归纳的方法得出规律的过程。学生在这一过程中的体验,无论是方法层面,还是思想层面均将对后继的学习产生深刻的影响。
在初步感知3的倍数的特征后,我提出了问题:一个数,在计数器上拨出它,所用数珠的颗数是3的倍数,它就是3的倍数,对吗?你是否认为我们研究出的结论对所有的数都适用呢?这两个问题的提出,意义在于通过“更大的数”和“任意找”两方面,使学生深切体验了不完全归纳法的这一要义,同时也培养了学生缜密思考问题的意识和习惯。
倍数的特征课后反思【第二篇】
在教学“3的倍数的特征”时,我首先以学生原有认知为基础,激发学生的探究欲望。利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此产生认知冲突,萌发疑问,激发强烈的探究欲望。
因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的角色。接着我以问题为中心组织学生展开探究活动。为了突出学生的主体地位,我依据学生的年龄特征和认知水平设计具有探索性的问题,引导学生紧紧围绕“3的倍数有什么特征”这个问题来开展学习活动,指导学生围绕问题展开探究活动,组织师生之间、生生之间的交流和讨论,逐步发现、归纳规律,得出结论,培养了学生的探索意识和分析、概括、验证、判断等能力。
文档为doc格式。
倍数的特征课后反思【第三篇】
“能被3整除数的数”一课,能体现新的教育理念、教育思想。仔细分析,有以下几个特点:
1、确立了基本技能目标和发展性目标并重的教学目标。
本节课不仅重视学生掌握能被3整除数的特征,并能运用特征进行正确判断,同时十分重视学生学习过程的体验和方法的渗透,让学生通过“猜测——验证——提出新的假设——验证”的探索过程来发现知识,获得结论,并感悟方法。
2、理性处理教材,使教学内容生活化。
教科书只是提供了学生学习活动的基本线索。教学中,教师要充分发挥主观能动性,创造性的使用教科书,本节课重新设计例题,通过用“0——9”十个数字组成能被整除的三位数让学生探索特征,这样处理使教学内容有较强的灵活性,促进了学生思维的发展。教学内容生活化不仅能激发学生兴趣,产生亲切感,而且使学生认识到现实生活中蕴藏着丰富的数学问题。开课时分享的“实用倍数的特征课后反思 的倍数特征教学反思(精彩5篇)”,同时也缩短了教师和学生的距离,课后“你再长几岁,这个岁数就能被3整除”这一开放题富有情趣,给学生留下了深刻的印象。
3、着力改变学生的学习方式。
学习方式的转变是本节课的主要特色。本节课始终以自主探索、合作交流为主要的`学习方式,让学生通过自主选教学内容,举例验证等独立思考和小组讨论等合作探究活动,获得教学知识、感悟方法。如在课的第二阶段,设计三个层次的教学活动,让学生充分探索、讨论、交流,使学生真正成为学习的主人。第一层通过学生猜测、举例、选数字组数,使学生产生两次认知冲突;第二层通过交换三位数数字的位置,仍然没能发现特征,产生第三次认知冲突;第三层次通过计算各位上的数的“和、差、积、商”使结论逐渐显露。这一过程不仅培养了学生探究精神,磨练了意志,同时也使学生品尝了成功的喜悦。
4、合理定位教师角色,营造民主、和谐的学习氛围。
《3的倍数的特征》是学生在学习过2和5倍数特征之后的又一内容,因为2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出3的倍数特征。
但上课的过程中,学生并没有按照我想的思路去进行,一个学生在我没有预想的前提下说出了3的倍数的特征,所以我准备让四人小组去合作交流发现3的倍数的特征也没有进行。只是让学生两人去再说一说刚才那个学生的发现,加以理解,巩固。
这节课结束后,我感觉以下方面做得不好。
1、备课不充分。自己在备课时没有好好的去备学生,没有做好多方面的预设;
2、在观察百数表到后面总结3的倍数特征时,都应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。老师不要着急,学生能说出的尽量让学生说,多放手,相信学生。
倍数的特征课后反思【第四篇】
3的倍数的特征的教学与2、5倍数的特征难度上有不同,因为2、5的倍数的特征从数的表面的特点就可以很容易看出(根据个位数的特点就可以判断出来),但是3的倍数的特征却不能从表面去判断,因而我特设以下环节突破重难点预习题。
1、给出一些数让学生先判断哪些数是3的倍数。并让学生说一说你是怎么判断的?
2、从以上的3的倍数进行思考:
(1)、3的倍数与它个位上的数有关系吗?
(2)、 3的倍数的各位上的数的和都是3的倍数吗?
然后再让每个同学任意写一个3的倍数,再看看这个数的各个数位上的数的和是不是3的倍数。要求学生说出方法和思路。
经过以上这些活动后学生都能对一个数是不是3的倍数进行简单的判断。特别是学生对3的倍数特征的判断大多数的学生能先求出各个数位的数字之和是不是3的倍数,然后再进行判断,效果很好。
倍数的特征课后反思【第五篇】
《3的倍数的特征》的教学是五下数学第二单元“因数与倍数”中一个知识点,是在学生已认识倍数和因数、2和5倍数的特征的基础上进行教学的。由于2、5的倍数的特征从数的表面的特点就可以很容易看出——根据个位数的特点就可以判断出来。但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。因而在《3的倍数的特征》的开始阶段我复习了2、5的倍数的特征之后就让学生猜一猜什么样的数是3的倍数,学生自然而然地会将“的倍数的特征”迁移到“3的倍数特征的问题中,得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是0-9的任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的倍数和一个数的个位数没有关系,因此要从另外的角度来观察和思考。在问题情境中让学生产生认知冲突,萌发疑问,激发强烈的探究欲望。接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把3的倍数的各位上的.数相加,看看你有什么发现,引导学生换角度思考3的倍数特征。学生在经历了猜测、分析、判断、验证、概括、等一系列的数学活动后感悟和理解了3的倍数的特征,引导学生真正发现:3的倍数各位上数的和一定是3的倍数;不是3的倍数各位上数的和一定不是3的倍数。从而,使学生明确3的倍数的特征,然后进行练习与拓展。这样的探究学习比我们老师直接教给他们答案要扎实许多,之后的知识应用学生就相应比较灵活和自如,效果较好。
这节课结束后,我感觉最大的缺憾之处在最后的拓展练习上,由于自己事先练习下水没有做足,所以误导了学生。题目如下:“从3、0、4、5这四个数中,选出两个数字组成一个两位数,分别满足以下条件:1、是3的倍数。2、同时是2和3的倍数。3、同时是3和5的倍数。4、同时是2、3和5的倍数。”学生问要写几个时,我回答如果数量很多至少写3个。呵呵,其实此题不需要如此考虑,因为它们的数量都有限。