首页 > 学习资料 > 教学设计 >

小学数学概念教学: 理论与实践精彩8篇

网友发表时间 2869888

小学数学概念教学: 理论与实践【第一篇】

针对第一学段孩子的抽象思维能力较弱,对数学语言描述的概念理解较为困难,我们在教学中应该多用形象的描述,创设有趣的问题情境,打些合理的比方等,努力让孩子们理解所学概念,可以采用以下一些方式来进行教学。

夸张的手势,丰富的肢体语言,理解运算所蕴含的意义,区分概念的差别。在让一年级的孩子认识加减法的时候,我举起双手像音乐指挥家一样,左边一部分,右边一部分,两部分合在一起就用加号,加号就是横一部分,竖一部分组起来的,减法则反过来展示。孩子们看得有趣,记得形象,不但记住了加减号还明白了加减号的用法。在教二年级孩子感受厘米和米时,我让孩子们学会用手势来表示1厘米和1米,使得孩子们在估计具体物体的长度时有据可依。形象生动的讲解,让孩子们自然接受数学符号。教师的语言讲解也要力求符合学生实际,特别是第一次描述时,教师一定要斟字酌句地用孩子能理解的语言尽可能用数学语言简洁地描述。因为对于第一次接触新概念的孩子们来说,第一印象是最为深刻的。当然在适当的时候我们也可以选择让孩子们根据自己的理解来说一说来试着对概念进行解释,一方面同龄人的解释会让孩子们概念的理解更为容易;另一方面也可以锻炼一下孩子的数学语言表达能力。我们要记住:孩子们的数学概念应该是逐级递进、螺旋上升的(当然要避免不必要的重复),以符合学生的数学认知规律。很多时候第一学段的孩子对于部分数学概念,只要能意会不必强求定要学会言传。

二、概念的学习宜多感官参与。

心理学家皮亚杰指出:“活动是认识的基础,智慧从动作开始。”书上的数学概念是平面的,现实却是丰富多彩的,照本宣科,简单学习自然无法让这些数学概念成为孩子们数学知识的坚固基石。如果我们能够让孩子们的多种感官参与学习,让平面的书本知识变得多维、立体,让孩子们的感觉和思维同步,相信能取得很好的教学效果。

教学《认识钟表》时,鉴于时间是一个非常抽象的概念,时间单位具有抽象性,时间进率具有复杂性,所以在教学时我以学生已有生活经验为基础,帮助学生通过具体感知,调动孩子的多种感官参与学习,在积累感性认识的基础上,建立时间观念,安排了以下一些教学环节。1.动耳听故事,调动情感引入。讲了一个发生在孩子们身边的故事:豆豆由于不会看时间,结果错过了最爱看的动画片。2.动眼看钟面,听介绍,初步了解钟面,形成“时、分”概念。动画是孩子们的最爱,让钟表爷爷来介绍钟面、时针、分针,生动有趣的讲解,让孩子们的心立刻专注地进行于课堂上。3.动嘴说时间,喜好分明。4.动手拨时间。5.动脑画时间(此时在前几项练习的基础上增加了一定难度,如出示一些没有数字的钟面,只有12、3、6、9四点的钟面,让孩子们对时针、分针的位置进行估计)。

通过这些活动,使孩子们口、手、耳、脑并用,自主地钻入到数学知识的探究中去,让时间从孩子们的生活中伶伶俐俐地变成数学知识,形成了数学概念。同时也让学生充分展示自己的思维过程,展现自己的认识个性,从而使课堂始终处于一种轻松、活跃的状态。

另外,教师在教学的过程中也应该对所教概念的知识生长点,今后的发展(落脚点)有一个全面、系统的认识,才能使得所教概念不再那么单薄,变得厚重起来。孩子对概念的来龙去脉有一个更清晰完整的了解,理解起来也就变得轻松。

三、概念的练习宜生动有趣。

第一学段初期的孩子从心理状态上来说较难适应学校的教学生活,在学习中总是会感到疲劳乏味,碰到相对枯燥的概念教学时这种疲惫更是由内而外。德国教育家福禄培尔在其代表作《幼儿园》中认为,游戏活动是儿童活动的特点,游戏和语言是儿童生活的组成因素,通过各种游戏,组织各种有效的活动,儿童的内心活动和内心生活将会变为独立的、自主的外部自我表现,从而获得愉快、自由和满足。将游戏用于教学,将能使儿童由被动变为主动,积极地汲取知识。

游戏、活动是孩子们的最爱,让他们在游戏活动中获取知识,这样的知识必定是美好而快乐的。有了这样的感觉,孩子们学习数学的兴趣一定是浓厚的,我们再让数学的魅力适度展示,让他们感觉到学习数学不但是一件轻松、快乐的事更是一件有意义的事。我想他们继续进行探索、学习新知的动力就来自于此了。

四、概念的拓展宜实在有效。

美国实用主义哲学家、教育家杜威从他的“活动”理论出发,强调儿童“从做中学”“从经验中学”,让孩子们在主动作业中运用思想、产生问题、促进思维和取得经验。确实,在一些亲力亲为的数学小实验中,孩子们表现出了一种自然的主动的学习情绪。他们以充沛的精力在这些小实验、小研究中主动地讨论所发生的事,想出种种方案去解决问题,使智力获得了充分的应用和发展。在数学概念的教学中,设计一些孩子能力所能致的小研究活动,可以让孩子对这些抽象的数学概念得到进一步体验、内化,得到课堂教学所不能抵达的效果。

孩子对于较大的单位比如说“千米”“吨”等,由于其经验的限制往往没有什么概念。只是,教师这样说了,他也便这样记了,对他而言也仅仅只是一个简单的字符而已。仅仅通过课堂教学,那么“千米”在孩子们的印象中便是“1千米=1000米”是一个不能用手丈量的长度;“吨”在孩子们的印象中便是“1吨=1000千克”是一个拿不动的质量。至于“1千米”到底有多长,“1吨”到底有多重?孩子们心中并无底,才使得经常会出现:一幢居民楼高约20(千米);一节火车车厢载重量为60(千克)这样的笑话。如果我们能让孩子们来进行切身的体验再附以一些小实验,这些问题便能迎刃而解了。

小学数学概念教学: 理论与实践【第二篇】

数学概念是数学知识结构中非常核心的内容。学生对数学概念的理解与掌握是否准确、清晰和完整,将直接影响到各种数学公式的学习和数学问题的解决。因此,数学教师上好概念课是非常重要的。本文将结合具体的教学案例谈谈如何有效进行概念教学。

一、创设情景,诱发需要,激起学习概念的欲望。数学概念的学习往往是比较抽象、枯燥的。如果在学习中能充分调动学生学习的积极性,常常能收到事半功倍之效。例如在教学“平均分”的认识时,我们创设了学生喜闻乐见的春游前分发物品的情景,问学生怎样分才公平?同时对教材进行了必要的补充,提供给学生的物品既有可以分完的,也有分不完的。由于情景富于吸引力,学生跃跃欲试,在尝试用学具操作的过程中体悟到每份要分得同样多“才公平”.通过观察、操作、归纳、分析,学生对平均分的理解呼之欲出,这时老师再适时引入“平均分”就水到渠成了。同时,在分一分中客观存在的“分不完,有剩余”的现象又为学生的后续学习有余数的除法做了铺垫。与此同时,在分的过程之中,教师有意识地将学生每次分的结果通过列表集中在一起,借助观察表中的`数量关系,学生很容易就发现当刚好分完的时候,可以用学过的求几个几的方法算出分的总量,这又自然沟通了乘法与除法之间的数量关系。而对于分不完有剩余的情况,学生也很自然想到要把不能继续再分的部分(即余数)加进去才可以算出原来的总量。

可见,恰当的教学情境既可以调动学生学习的积极性又可以帮助突破教学重难点。又如在教学百分数时,教师并没有直接出示百分数的概念,而是创设了妈妈去商店选购羊毛衣的生活情境,询问学生“一件羊毛衣上标着100%的纯羊毛,另一件标着87%的纯羊毛,你建议妈妈买哪件?为什么?”借助这种源于生活的讨论,学生通常会感到趣味盎然,在不知不觉中学会了概念。

反之,不是源于学生认知需要的学习,教学效果就大打折扣了。如关于“倍”的认识,有老师先摆了2朵红花,然后又摆了3个2朵蓝花,然后告诉学生这时蓝花是红花的3倍。学生没有认识“倍”的内在需要,而是硬生生地被告知这就是“倍”,这种毫无感情色彩的概念教学,实践证明学生会在后续的相关练习中经常出错。

二、创设多种情景,利用丰富的认知材料,在充分动手操作中感悟概念的本质特征。

总所周知,小学生的思维特征是形象直观思维为主,抽象概括能力还比较有限,而低中段的学生尤为突出,这对概念的学习无疑是一种制约。因此教师在概念教学中应尽可能地创设多种情景,让学生在充分的动手操作中感悟概念。如前面所说的平均分的认识,我们不但根据教材让学生用学具分一些很直观的东西,同时我们还考虑到学生比较欠缺的一些生活中可能会接触的与平均分相关的生活情景,如“每瓶水2元,12元可以买几瓶水?”“15位同学坐船,每3人做一只小船,需要几只小船?”“每天吃6粒药丸,1瓶30粒的药可以吃几天?”在分一分中感悟这也是平均分的现象;由于在倍的初步认识中我们有意识的拓宽平均分的生活情景,学生对平均分的认识就不在局限于“分苹果”这样显而易见的情景,在后续的问题解决中难度自然降低。

三、在形成概念之后再回到具体化。

学习数学概念是为了解决数学问题。概念的形成是将具体事物抽象概括的过程,在形成概念之后,要把这些本质属性推广到同类的事物中,这样才有助于学生加深对概念的理解和利用。如平均分的学习并没有在学生二年级时认识了平均分的概念以后就结束了,到了三年级学习除数是一位数的除法时,教师应帮助学生在解决问题的过程中进一步巩固对除法意义的认识。

总和言之,我们认为在数学概念的教学中,教师应根据学生的认知规律充分调动学生的积极性,利用各种变式材料,帮助学生掌握概念的内涵与外延,并学以致用,利用对概念的理解解决相应的数学问题,从而真正掌握数学概念。

参考文献。

1、怎样让低年级学生理解概念,金雪根,徐丽莉《中小学数学小学版》底1、2期。

小学数学概念教学: 理论与实践【第三篇】

对一名数学教师而言,教学反思首先是对数学概念的反思。

对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界去了解世界。而对于数学教师来说,他还要从“教”的角度去看数学去挖掘数学,他不仅要能“做”、“会理解”,还应当能够教会别人去“做”、去“理解”,因此教师对教学概念的反思应当从逻辑的、历史的、关系、辨证等方面去展开。

以函数为例:

从逻辑的角度看,函数概念主要包含定义域、值域、对应法则三要素,以及函数的单调性、奇偶性、周期性、对称性等性质和一些具体的特殊函数,如:指数函数、对数函数等这些内容是函数教学的基础,但不是函数的全部。

从关系的角度来看,不仅函数的主要内容之间存在着种种实质性的联系,函数与其他中学数学内容也有着密切的联系:

方程的根可以作为函数的图象与轴交点的横坐标;

不等式的解就是函数的图象在x轴上所对应的横坐标的集合;

数列也就是定义在自然数集合上的函数;

……。

同样,几何内容也与函数有着密切的联系。

……。

教师在教学生时,不能把他们看作“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”,这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。

要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题“挤”出来,使他们把解决问题的思维过程暴露出来。

小学数学概念教学: 理论与实践【第四篇】

数学概念是小学数学知识的基本要素。小学数学是由许多概念、法则、性质等组成的确定体系。每一个法则、性质等实际上都是一个判断,而且离不开概念。可以说,判断是概念与概念的联合。因此,要使小学生掌握所学的数学知识和计算技能,并且能够实际应用,首先要使他们掌握好所学的数学概念。

小学生的思维特点是从具体形象思维向抽象逻辑思维过渡。一般地说,数学概念具有不同程度的抽象水平。在确定教学某一概念的必要性的前提下还应考虑其抽象水平是否适合学生的思维水平。

学生容易理解的一些概念,可以采取定义的方式出现。

当有些概念不易描述其基本特征时,可以采取举例说明其含义或基本特征的方法。例如,在教学“量”这概念时,可以说明长度、重量、时间、面积等都是量。对“平面”这个概念可以通过某些物体的平展的表面给以直观的说明。

小学生的数学概念的形成是一个复杂的过程。特别是一些较难的数学概念,教学时需要一个深入细致的工作的长过程。根据数学的特点和儿童的认知特点,教学时要注意以下几点。

1.遵循儿童的认知规律,引导学生抽象、概括出所学概念的本质特征。2.注意正确地理解所学的概念。3.掌握概念间的联系和区别。比较所学的概念并弄清它们的区别,可以使学生深刻地理解这些概念,并消除彼此间的混淆。在教过有联系的概念之后,可以让学生把它们系统地加以整理,以说明它们之间的关系。例如,四边形、正方形、长方形、平行四边形和梯形可以通过下图加以系统整理,以说明它们的关系。

在小学如何确定教学的数学概念是一个重要的复杂的问题。在选定概念时,既要很好地考虑需要,又要很好地考虑学生的接受能力。合理地安排数学概念对于学生掌握他们有很大帮助。在编排概念时,既要充分考虑所教概念的逻辑系统性,又要照顾到不同年龄的学生的认知特点。

教学的策略对于形成学生的数学概念起着重要的作用。在教学概念时教师应当遵循儿童的认知规律和激发学生思考的原则,并且注意使学生正确理解概念的意义,掌握概念间的联系和区别,并在实际中应用所学的概念。

小学数学概念教学: 理论与实践【第五篇】

新课程标准中明确指出:“教师的职责在于向学生提供从事数学活动的机会,在活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。”在教学活动的组织中始终注意:

(1)以问题为活动的核心。在组织活动前,结合学习内容和学生实际,创设问题情境。

(2)探究是一个活动过程也是学生的思维过程,引导学生多角度思考问题,理解公式的结构特征,达到运用自如的效果。

(3)促进学生发展是活动的目的。让学生在参与平方差公式的探究推导、归纳证明、验证应用的过程中促进学生代数推理能力、表达能力、数学思想方法等得方面的进一步发展。

通过这节课我认为今后的教学还需要备好教材,设计好自己的教案,注重学生的主体地位,渗透数学思想方法,把握好知识的发生过程,不是机械的记忆、简单的叠加,而要做到在理解基础上记忆,符合认知规律的重新构建,设计时注意要有阶梯,且要适度,提高自己的点拨技巧,为上好每一节课而不懈努力。

小学数学概念教学: 理论与实践【第六篇】

数学科学严谨的推理性,决定了搞好概念教学是传授知识的首要条件?由于概念不清,表现出思路闭塞,逻辑紊乱,在学生中屡见不鲜?因此,搞好概念教学是实现知识传授和能力培养的重要环节,是提高教学质量的一个重要方面。

小学数学概念教学: 理论与实践【第七篇】

数学概念是数学知识中最基础的知识和重要组成部分。首先,它具有相对独立性。概念反映的是一类对象的本质属性,即这类对象的内在的、固有的属性,舍去了这一类现象的具体物质属性和具体关系,抽象概括出其中量的关系和形式构造。因此,在某种程度上表现为与原始对象具体内容的相对独立。其次,它是抽象性与具体性的统一。数学概念反映了一类对象的本质属性。以“矩形”概念为例,现实世界中并不能见到抽象的矩形,而只有形形色色的具体的矩形。从这个意义上说,数学概念“脱离”了现实。由于数学中使用了形式化、符号化的语言,使数学概念离现实更远,抽象程度更高。正因为抽象程度高,与现实的原始对象联系弱,才使得数学概念的应用更广泛。不管怎么抽象,高层次的概念总是以低层次的概念为具体内容,且数学概念是数学命题、数学推理的基础部分,就整个数学体系而言,概念是实实在在的。所以,它既是抽象的又是具体的。再次,它还具有逻辑联系性。数学中大多数概念都是在原始概念的基础上形成,并被用逻辑定义的方法,以语言或符号的形式固定,因而具有丰富的内涵和严谨的逻辑联系。在数学概念学习过程中,小学生往往对概念的内涵和外延把握不准,容易对概念产生模糊的认识,以致影响分析问题、解决问题和信息处理的能力。因此,正确理解数学概念是掌握数学基础知识的前提,概念教学是整个数学教学的关键。教师应当加强概念教学,努力使学生对概念理解透彻、掌握牢固、应用灵活,并设法培养学生的思维能力和解题技能,从而提高教学质量。

在小学数学教学过程中,学生数学能力的培养、数学问题的解决,实际上是运用概念做出判断、进行推理的过程。在概念、判断、推理这三种思维形式中,概念作为思维的“细胞”,是判断和推理的前提。没有正确的概念,就不可能有正确的判断和推理,更谈不上逻辑思维能力的培养。因此,学好概念是学好数学最重要的一环。从小学数学概念教学的实际来看,学生对概念的态度大体有两种:一种认为基本概念单调乏味,不重视它,不求甚解,导致对概念的认识和理解模糊。另一种是重视基本概念但只是死记硬背,而不能真正透彻理解,这样必然严重影响学生对数学基础知识和基本技能的掌握和运用。只有真正掌握了数学中的基本概念,学生才能把握数学的知识系统,才能正确、合理、迅速地进行运算、论证和空间想象。从一定意义上说,数学水平的高低,关键是在对数学概念的理解、应用和转化等方面的差异。;因此,抓好概念教学是培养数学能力的根本一环。

影响小学数学概念教学的因素很多。一方面,在教学中教师对概念教学的重视程度是影响教学的主要外部因素。在概念教学中,教师往往刻意关注概念表述的“精确”,而忽视其实质和实际的背景;强调定义、定理的字斟句酌推敲,而忽视其发生、发展的过程和反映的基本事实和现象;过分追求逻辑严谨和体系的形式化,而忽视学生在一定年龄阶段的思维所应该具有的形象性。另一方面,《小学数学课程标准》中指出,小学数学基础知识中的概念主要包括:数的概念、集合图形的概念、四则运算的概念、计量的概念、比和比例的概念、式的概念等。这些概念具有较强的抽象性、概括性等特征,本身也给概念教学带来了难度。

就小学生个体而言,由于年龄较小,缺乏足够的感性材料和实际生活经验,抽象逻辑思维能力、语言理解能力等较差,这些因素都会影响小学数学概念教学的成效。

小学生学习数学概念,往往是利用概念的同化和概念的形成这两种方式。概念的同化需要学生从已有的认知结构中,检索出与新概念有联系的概念,通过相互作用提示新概念的本质属性。学生个体之间的智力是有差别的,即便是同一年龄或同一年级的学生,由于智力发展的程度不同,达到相应的学习水平的速度也不一样,其主要原因是学生的认知策略和元认知水平的差别。概念的形成主要依靠学生的直接经验,从大量的感性材料中进行抽象概括,提示概念的本质属性,从而形成概念。小学数学的概念教学有明显的认知直观性,需要有具体的经验作支持。因此,学生原有认知结构中概念的清晰度和稳固程度、原有生活经验和得到的感性材料的丰富性,将对概念教学起着重要作用。

学生的抽象概括能力和语言表达能力,都是影响概念教学效果的内部因素,值得关注。在概念的形成过程中,学生通过观察客观事物,发现事物的各种属性,然后把本质属性从中抽象出来。在掌握了概念的内容后,再把这些本质属性推广到同类事物中,才能对概念所反映的同类事物有普遍的认识,这才算理解了概念。比如,教学长方形概念时,应先让学生观察具有长方形的各种实物,引导学生找出他们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。如果缺乏必要的抽象概括能力,概念的内涵和外延就会出现片面扩大或缩小的错误。学生的语言表达能力对数学概念教学也相当重要。如果数学语言表达能力差,必然对概念的表述不够准确,就会影响到概念的理解、巩固和运用。比如,“半径”的准确定义应该是:“连接圆心到圆上任意一点的线段叫做圆的半径。”如果学生把它说成是圆心到圆的距离,无疑就会在实际运用中产生偏差。

小学数学概念的教学,一般要经过概念的引入、概念的建立、概念的巩固和概念的深化等环节。这是一个复杂的思维过程,既是知识的再创造、概念的逐步理解过程,又是改善学生思维品质、发展学生思维能力、培养学生创新意识和创造能力的过程。

1、概念的引入。

概念的引入是数学概念教学的第一步,直接关系到学生对概念的理解和掌握程度。

形象直观地引入。小学生掌握概念是一个主动的、复杂的认识过程,他们的抽象思维是直接与感性经验相联系的。因此,首先应提供丰富而典型的感性材料,使他们通过直观形象,逐步抽象、内化成概念。形象直观地引入概念,就是通过小学生所熟悉的生活实例以及生动形象的比喻,提出问题,引入概念;或者采用教具、模型、图表、投影演示及动手操作等,增加学生的感性认识,然后逐步抽象,引入概念。在这一过程中,应该重视生活实例在引入概念中的作用。数学来自现实生活,生活中处处有数学,结合生活实际引入概念符合小学生的心理特点和认知规律。比如,在教学三角形的特点时,可以让学生思考:在实际生活中哪些地方用到了“三角形”?自行车的三角架、支撑房顶的梁架、电线杆上的三角架等,为什么都做成三角架而不做成四边形呢?通过生活中的实例,来提示三角形具有稳定性的特点。利用学生熟悉的生活实际中的一些事物或实例,使其获得感性认识,便于在此基础上引入概念。现代心理学认为,实际操作是儿童智力活动的源泉。通过学生的实际操作引入概念,可以使抽象的概念具体化。操作活动,对学生思维能力的发展有着极大的推动作用。教学中,可以让学生亲自动手,量一量、分一分、算一算、摆一摆,从中获得第一手的感性材料,为抽象概括出新概念打下基础。比如,教学“圆周率”的概念时,可以让学生做几个直径不等的圆,在直尺上滚动或用绳子量出圆的周长,算一算周长是直径的几倍。让学生自己发现圆的大小虽然不同,但周长总是直径的3倍多一些。这时教师引入概念:圆周长是同圆直径的3倍多,是个固定的数,称为“圆周率”。

从原有概念的基础上引入。数学概念之间的联系十分紧密,因此可以从学生已有的概念知识基础上加以引申,直接导出新概念。这样,既巩固了旧知识,又学习了新概念,强化了新旧知识的内在联系,能帮助学生建立系统、完整的概念体系,充分调动学习的积极性和主动性。比如,在“整除”概念基础上建立“约数”、“倍数”概念;由“约数”导出“公约数”、“最大公约数”;由“倍数”引出“公倍数”,再导出“最小公倍数”。又如,在几何知识中,可以由长方形的面积导出正方形、平行四边形、三角形、梯形等面积公式。

从计算方法引入。指通过计算发现问题,通过计算引出概念。有些概念不便运用实例引入,又与已有概念联系不大,就可以通过对运算的观察分析,发现其中蕴含的本质属性,达到引出概念的目的。比如,教学“倒数”的认识时,可以先给出两个数相乘乘积是1的几个算式,让学生计算出结果,再观察、分析,从中发现规律,引出“倒数”的定义。

2、概念的建立。

概念的建立是概念教学的中心环节。感知和经验只是入门的导向,对概念本质属性的揭示才能成为判断的依据。

利用变式。所谓变式,是指提供的事例或材料不断地变换呈现形式,改变非本质属性,使本质属性“恒在”,借此可以帮助学生准确形成概念。感性材料的表现形式对数学概念的学习和掌握有重要影响,如果给学生提供的感性材料都是一些“标准”的实物或图形,那么学生在概念的理解上就难免出现片面性。利用变式,可以使学生透过现象看到本质,真正掌握概念。

利用对比辨析。建立概念时,对一些临近的、易混淆的数学概念,应该及时进行对比辨析,弄清它们之间的联系和区别。如最大公约数和最小公倍数;整除和除尽;正比例、反比例和不成比例的量等。这样,既可以巩固概念,又能使新概念清晰,有助于学生概念系统的逐步形成。

利用反面衬托。反面衬托即举出概念的反例,可直接举反例说明,也可从正反两方面分析,是进行概念教学的有效方法。学生通过接触这些与概念相关的正反例子,能进一步加深对概念的理解。

多层次、分阶段建立概念体系。概念的理解不是一次完成的,要有一个长期的、反复的认识过程。同样,一个完整的概念体系的建立也要多层次、分阶段进行。比如,在教学“分数的初步认识”时,可以分成三个层次来教学:第一是突出把一个分数“平均分”以后“取份”;第二是解决“份数”与“整体”的关系;第三是明确单位“1”可以是一个物体,也可以是一类物体的集合体。通过这样反复的概念教学,学生不但能够很好地掌握分数的基本概念,而且为继续学习分数的本质属性打下了良好的基础。

3、概念的巩固与深化。

从认识的过程来说,形成概念是从感性认识上升到理性认识的过程。即从个别的事例中总结出一般性的规律,巩固概念则是识记概念和保持概念的过程,是加深理解和灵活运用概念的过程,即从一般到个别的过程。小学生数学概念的掌握不是一蹴而就的,必须通过及时的巩固来加深对概念的理解。

巩固概念一般采用熟记、应用并建立概念系统等方法来进行。熟记,就是要求学生对概念定义在理解的基础上通过反复感知、反复回忆等手段达到熟练记忆。应用,则是指学生在应用概念中,达到巩固概念的作用,其主要形式是练习。比如,教学“分数乘法的意义”后,让学生说说3÷4×5,5×3÷4,2÷3×3÷4等的意义。又如,学了“圆的认识”后,让学生判断图中哪条线段为圆的半径,哪条线段为圆的直径。

学生的认识是由浅入深、由具体到抽象的发展过程,而学生数学知识又是分段进行,概念教学也是分段安排的。因此,概念教学既要重视概念的阶段性,又要注意到概念发展的连续性,要有计划地发展概念的含义,按阶段发展学生的抽象概括能力。通过运用,加深学生对概念的认识,使学生找出概念间的纵向与横向联系,形成系统的认识结构,达到深化概念的目的。

总之,小学数学概念教学的各阶段环环相扣。引入概念后要紧接着建立概念,建立后要及时巩固,巩固中要加深理解,同时又要为概念的发展作准备。教师在概念教学中,要结合概念的特点和学生的实际,灵活设计不同的环节,采取多种教学策略,使学生在掌握数学概念的同时,提高数学能力。

小学数学概念教学: 理论与实践【第八篇】

概念是数学知识的基础,是数学思想与方法的载体,所以概念教学尤为重要?在概念教学中,教师既要启发学生对所研究的对象进行分析、综合、抽象,还要讲清概念的形成过程,阐明其必要性和合理性。

数学科学严谨的推理性,决定了搞好概念教学是传授知识的首要条件?由于概念不清,表现出思路闭塞,逻辑紊乱,在学生中屡见不鲜?因此,搞好概念教学是实现知识传授和能力培养的重要环节,是提高教学质量的一个重要方面。

相关推荐

热门文档

22 2869888