小学数学概念教学: 理论与实践大全优秀8篇
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“小学数学概念教学: 理论与实践大全优秀8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
小学数学概念教学: 理论与实践大全【第一篇】
学习内容:
教材第9-11。
预设目标:
1、在辨认8个方向基础上,学会看简单的线路图。并能用恰当词描绘物体所在的方向。
2、在对简单物体的位置关系的探索过程中,发展空间观念。
3、培养学生热爱家乡、热爱生活的情感。
学习重点、难点:
正确辨别方向,认识线路图。
教具、学具准备:
地图等。
预设流程:
一、创设情境,谈话导入。
师:小朋友在双休日都喜欢和家长去什么地方?用什么方式去呢?
生:乘公交车。
师:每路公交车都有一定的行车路线,我们在乘车的时候要注意什么?
生:看车是不是经过我们要去的地方。
生:看车开的方向是不是和我们要去的方向一致。
生:看我们要坐几站才下车……。
师:大家提的这些都很有必要了解清楚。今天老师带大家去动物园看看,那么可以乘坐。
几路车呢?首先要学习如何认识路线。(出示课题:认识路线)。
二、自主探索,小组合作解决问题。
1、引入:师出示1路车路线图。
师:有了这张路线图,你们一定能很快知道各个站点在动物园的哪个方向,谁来说一说?
师:小朋友观察真仔细,你能在小组内说一说1路车的行车路线吗?
从火车站出发向行驶……先引导学生在组内说一说,再全班交流。
师:谁还能说一说你想从哪个站点出发到哪个站点的路线?
请几个学生说一说自己的行车路线。
2、出示动物园的导游图。
3、师:我们乘坐1路车来到动物园,这里的'动物可真不少,谁来说一说有哪些动物?
4、你最喜欢哪种动物,它在动物园的什么位置?请你在小组内说一说。
师:猴子在熊猫的什么方向?狮子在大门的什么方向?学生指名回答。
接下来由学生提问,学生指名回答。
5、小朋友真聪明,我这儿还有一个要求:我想从大门出发去看完所有的动物,再从大门出来,我应该先去哪儿,再去哪,请帮我安排一条路线吧。
a)同桌合作完成路线图。
b)指名介绍路线图。
c)集体评价。
三、巩固练习:
1、自己阅读课本第10页,对书上提的问题,在图上标出来,让小组内同学评一评。
2、独立完成课本第12页的第5题。
3、完成第6题。
(1)先让学生看图辨方向,弄清图上方位。
(2)叙述行走路线。
四、全课小结:
小朋友们今天学习了新的知识,说一说今天最感兴趣的什么?为什么?
五、随堂作业。
教学反思:
小学数学概念教学: 理论与实践大全【第二篇】
数学概念是小学数学知识的基本要素。小学数学是由许多概念、法则、性质等组成的确定体系。每一个法则、性质等实际上都是一个判断,而且离不开概念。可以说,判断是概念与概念的联合。因此,要使小学生掌握所学的数学知识和计算技能,并且能够实际应用,首先要使他们掌握好所学的数学概念。在中国编写小学数学课本时十分重视数学概念的教学。
在小学如何确定或选择应教的数学概念,是一个复杂的问题。根据我们的经验,在选定数学概念时既要考虑到需要,又要考虑到学生的接受能力。
(一)选择数学概念时应适应各方面的需要。
1.社会的需要:主要是指选择日常生活、生产和工作中有广泛应用的数学概念。绝大部分的数、量和形的概念是具有广泛应用的。但是社会的需要不是一成不变的,而是常常变化的。因此小学的数学概念也应随着社会的发展适当有所变化。例如,1991年我国采用法定计量单位后,原来采用的市制计量单位就不再教学了。
2.进一步学习的需要:有些数学概念在实际中并不是广泛应用的,但是对于进一步学习是重要的。例如质数、合数、分解质因数、最大公约数和最小公倍数等,不仅是学习分数的必要基础,而且是学习代数的重要基础,必须使学生掌握,并把它们作为小学数学的基础知识。
3.发展的需要:这里主要是指有利于发展儿童的身心的需要。例如,引入简易方程及其解法,不仅有助于学生灵活的解题能力,减少解题的困难程度,而且有助于发展学生抽象思维的能力。在我国的小学数学中,教学方程产生了很好的效果。小学生不仅能用方程解两三步的问题,而且能根据问题的`具体情况选择适当的解答方法。这里举一个例子。
要求五年级的一个实验班的38名学生(年龄―岁)解下面两道题:
学生能用两种方法解:算术解法和方程解法。用每种方法解题的正确率都是%。下面是两个学生的解法。
一个中等生的解法:
一个下等生的解法:
多少米?
这道题是比较难的,学生没有遇到过。结果很有趣。%的学生用方程解,%的学生用算术方法解。而用方程解的正确率比用算术方法解的高22%。
下面是两个学生的解法。
一个优等生用算术方法解:
一个中等生用方程解:
解:设买来蓝布x米。
[1][2][3][4]。
小学数学概念教学: 理论与实践大全【第三篇】
在小学如何确定或选择应教的数学概念,是一个复杂的问题。根据我们的经验,在选定数学概念时既要考虑到需要,又要考虑到学生的接受能力。
(一)选择数学概念时应适应各方面的需要。
1.社会的需要:主要是指选择日常生活、生产和工作中有广泛应用的数学概念。绝大部分的数、量和形的概念是具有广泛应用的。但是社会的需要不是一成不变的,而是常常变化的。因此小学的数学概念也应随着社会的发展适当有所变化。例如,1991年我国采用法定计量单位后,原来采用的市制计量单位就不再教学了。
2.进一步学习的需要:有些数学概念在实际中并不是广泛应用的,但是对于进一步学习是重要的。例如质数、合数、分解质因数、最大公约数和最小公倍数等,不仅是学习分数的必要基础,而且是学习代数的重要基础,必须使学生掌握,并把它们作为小学数学的基础知识。
3.发展的需要:这里主要是指有利于发展儿童的身心的需要。例如,引入简易方程及其解法,不仅有助于学生灵活的解题能力,减少解题的困难程度,而且有助于发展学生抽象思维的能力。在我国的小学数学中,教学方程产生了很好的效果。小学生不仅能用方程解两三步的问题,而且能根据问题的具体情况选择适当的解答方法。这里举一个例子。
要求五年级的一个实验班的38名学生(年龄―岁)解下面两道题:
学生能用两种方法解:算术解法和方程解法。用每种方法解题的正确率都是%。下面是两个学生的解法。
一个中等生的解法:
一个下等生的解法:
多少米?
这道题是比较难的,学生没有遇到过。结果很有趣。%的学生用方程解,%的学生用算术方法解。而用方程解的正确率比用算术方法解的高22%。
下面是两个学生的解法。
一个优等生用算术方法解:
一个中等生用方程解:
解:设买来蓝布x米。
(二)选择数学概念时还应考虑学生的接受能力。小学生的思维特点是从具体形象思维向抽象逻辑思维过渡。一般地说,数学概念具有不同程度的抽象水平。在确定教学某一概念的必要性的前提下还应考虑其抽象水平是否适合学生的思维水平。为此,根据不同的情况可以采取以下几种不同的措施:
1.学生容易理解的一些概念,可以采取定义的方式出现。例如,在四五年级教学四则运算的概念时,可以教给四则运算的定义,使学生深刻理解四则运算的意义以及运算间的关系。而且使学生能区分在分数范围内运算的意义是否比在整数范围内有了扩展,以便他们能在实际计算中正确地加以应用。此外,通过概念的定义的教学还可以使学生的逻辑思维得到发展,并为中学的进一步学习打下较好的基础。
2.当有些概念以定义的方式出现时,学生不好理解,可以采取描述它们的基本特征的方式出现。例如,在高年级讲圆的认识时,采取揭示圆的基本特征的方式比较好:(1)它是由曲线围成的平面图形;(2)它有一个中心,从中心到圆上的所有各点的距离都相等。这样学生既获得了概念的直观的表象,又获得了其基本特征,从而为中学进一步提高概念的抽象水平做较好的准备。
3.当有些概念不易描述其基本特征时,可以采取举例说明其含义或基本特征的方法。例如,在教学“量”这概念时,可以说明长度、重量、时间、面积等都是量。对“平面”这个概念可以通过某些物体的平展的表面给以直观的说明。
数学概念的编排,在一定程度上可以看作是各年级对数学概念的选择和出现顺序。数学概念的合理编排不仅有助于学生很好地掌握,而且便于学生掌握运算、解答应用题以及其他内容。根据教学论和我们的实践经验,数学概念的编排应当符合下述原则:既适当考虑数学概念的逻辑系统性又适当考虑学生认知的年龄特点。为了贯彻这一原则,必须考虑以下几点。
(一)采取圆周排列:这一点不仅反映人类的认知过程,而且。
符合儿童的认知特点。如众所周知的,自然数的认识范围要逐渐地扩大,“分数”概念的意义也要逐步的予以完善。
(二)注意概念之间的关系:例如,小数的初步认识宜于放在分数的初步认识之后,以便于学生理解小数可以看作分母是10、100、1000……的分数的特殊形式。把比的认识放在分数除法之后教学,会有助于学生理解比和分数的联系。
(三)概念的抽象水平要符合学生的接受能力:例如,在低年级教学减法的含义,是通过操作和观察使学生理解从一个数里去掉一部分求剩下的部分是多少。而在高年级教学时,宜于通过实际例子给出减法的定义。在低年级教学平行四边形时,只要说明其边和角的特征而不教平行线的认识。但在高年级就宜于先介绍平行线,再给出平行四边形的定义。
(四)注意数学概念与其他学科的配合:数学作为一个工具与其他学科有较多的联系。有些数学概念,如计量单位、比例尺等在学习语文和常识中常用到,在学生能够接受的情况下可以提早教学。
小学生的数学概念的形成是一个复杂的过程。特别是一些较难的数学概念,教学时需要一个深入细致的工作的长过程。根据数学的特点和儿童的认知特点,教学时要注意以下几点。
(一)遵循儿童的认知规律,引导学生抽象、概括出所学概念的本质特征。例如,在低年级教学“乘法”这个概念时,可以引导学生摆几组圆形,每组的圆形同样多,并让学生先用加法再用乘法计算圆形的总数。通过比较引导学生总结出乘法是求几个相同加数和的简便算法。教学长方形时,先引导学生测量它的边和角,然后抽象、概括出长方形的特征。这样教学有助于学生形成所学的概念并发展他们的逻辑思维。
(二)注意正确地理解所学的概念。教学经验表明,学生对某一概念的理解常常显示出不同的水平,尽管他们都参加同样的活动如操作、比较、抽象和概括等。有些学生甚至可能完全没有理解概念的本质特征。这就需要检查所有的学生是否理解所学的概念。检查的方法是多样的,其中之一是把概念具体化。例如,给出一个乘法算式,如3×4,让学生摆出圆形来说明它表示每组有几个圆形,有几组。另一种方法是给出所学概念的几个变式,让学生来识别。例如,下图中有几个长方形摆放的方向不同,让学生把长方形挑选出来。
此外,还可以让学生举实例说明某一概念的意义,如举例说明分数、正比例的意义。
(三)掌握概念间的联系和区别。比较所学的概念并弄清它们的区别,可以使学生深刻地理解这些概念,并消除彼此间的混淆。例如,应使学生能够区分质数与互质数,长方形的周长和面积,正比例和反比例等。在教过有联系的概念之后,可以让学生把它们系统地加以整理,以说明它们之间的关系。例如,四边形、正方形、长方形、平行四边形和梯形可以通过下图加以系统整理,以说明它们的关系。
通过概念的系统整理使学生在头脑中对这些概念形成良好的认知结构。
(四)重视概念的应用。学习概念的应用有助于学生进一步加。
深理解所学的概念,把数学知识同实际联系起来,并且发展学生的逻辑思维。例如,学过长方体以后,可以让学生找出周围环境中哪些物体的形状是长方体。学过质数概念以后可以让学生找出能整除60的质数。
我们的实验表明,由于采取了上述的措施,学生对概念的理解的正确率有较明显的提高。下面是19xx年进行的一次测验中有关学生掌握数学概念的测试结果。
注:1.两个实验班都是五年级,年龄是11―12岁。一个对照班是五年制五年级,另一个是六年制六年级。
年用同一测验测试全国约200个实验班,也得到较好的结果。
上面的测试结果表明,实验班学生学习数学概念的成绩,在认数、几何图形,特别是在学习倒数、比例和扇形方面都优于对照班的学生。最后一项测试结果还表明,实验班学生在发展空间观念和作图能力方面优于对照班学生。
四结论。
在小学加强数学概念的教学对于提高学生的数学概念的认知水平具有重要的意义。
在小学如何确定教学的`数学概念是一个重要的复杂的问题。在选定概念时,既要很好地考虑需要,又要很好地考虑学生的接受能力。
合理地安排数学概念对于学生掌握他们有很大帮助。在编排概念时,既要充分考虑所教概念的逻辑系统性,又要照顾到不同年龄的学生的认知特点。
教学的策略对于形成学生的数学概念起着重要的作用。在教学概念时教师应当遵循儿童的认知规律和激发学生思考的原则,并且注意使学生正确理解概念的义,掌握概念间的联系和区别,并在实际中应用所学的概念。
(本文是1992年向第七届国际数学教育会议提交的论文,曾在大会第一研讨组上宣读。)。
将本文的word文档下载到电脑,方便收藏和打印。
小学数学概念教学: 理论与实践大全【第四篇】
今年的这一学期可谓忙碌的一年,忙中偷闲的读了吴正宪老师和她的团队所著的《小学数学教学基本概念解读》,感觉只有在读书的时候才是人生最快乐的时候,才感觉这是我们老师应该过的`生活。
“工欲善其事,必先利其器”!这本书正是帮助广大小学数学老师“善事”——实施良好的教学教育的利器。这本书也是吴老师和她的团队倾力之作,长期教学实践和理论探索的成果结晶。书中梳理了小学数学中出现的几乎所有基本概念,对每一个概念做出界定;这是一本为小学数学老师答疑解难的教学工具;介绍其缘起背景、来龙去脉、展示其应用领域;还对相关的数学概念的教学建议,帮助老师们分析和处理教学过程中遇到的带有共性的问题,引导老师们解除困惑,走出误区,可以说为小学数学老师们提供了在学习和自身提高的理论指南和实用大全,学案例自然生动,切合数学实质。
这本书,使我更明确了小学数学的十个核心概念——数感,符号意识,空间观念,几何直观,数据分析观念,运算能力,推理能力,模型思想,应用意识和创新意识;清楚了小学数学中常见的数学思想:数学抽象的思想——抽象思想,分类思想,集合思想,数形结合思想,对应思想,符号表示思想;数学推理的思想——数学化归思想,类比思想,极限思想,代换思想,假设思想;数学建模的思想——函数思想。特别是创新意识对我的影响很大,吴老师不仅对创新意识的概念进行解读,明确指出创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程中。还给了我们在培养孩子这方面意识时可行性的建议。创新意识不是教出来的,而是做出来的,使学生在各个教学环节中不断亲身经历、不断锻炼、不断积累而形成的。老师要坚持在做中去培养孩子的问题意识,从而逐步提升学生的创新意识。
读了这本书,深感它为我们一线老师提供了进一步深入和拓展的空间,为我们解惑答疑,帮助我们分析和处理教学中遇到的问题,走出误区。使我受益匪浅。
小学数学概念教学: 理论与实践大全【第五篇】
数学科学严谨的推理性,决定了搞好概念教学是传授知识的首要条件?由于概念不清,表现出思路闭塞,逻辑紊乱,在学生中屡见不鲜?因此,搞好概念教学是实现知识传授和能力培养的重要环节,是提高教学质量的一个重要方面。
小学数学概念教学: 理论与实践大全【第六篇】
数学概念比较抽象,而小学生,特别是低年级小学生,由于年龄、知识和生活的局限,其思维处在具体形象思维为主的阶段。认识一个事物、理解一个数学道理,主要是凭借事物的具体形象。因此,教师在数学概念教学的过程中,一定要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。
2、运用旧知识引出新概念
数学中的有些概念,往往难以直观表述。如比例尺、循环小数等,但它们与旧知识都有内在联系。我就充分运用旧知识来引出新概念。在备课时要分析这个新概念有哪些旧知识与它有内在的联系。利用学生已掌握的旧知识讲授新概念,学生是容易接受的。把已有的知识作为学习新知识的基础,以旧带新,再化新为旧,如此循环往复,既促使学生明确了概念,又掌握了新旧概念间的联系。
3、用"变式"引导学生理解概念的本质
在学生初步掌握了概念之后,我经常变换概念的叙述方法,让学生从各个侧面来理解概念。概念的表述方式可以是多种多样的。如质数,可以说是"一个自然数除了1和它本身,不再有别的因数,这个数叫做质数。"有时也说成"仅仅是1和它本身两个因数的倍数的数"。学生对各种不同的叙述都能理解,就说明他们对概念的理解是透彻的,是灵活的,不是死背硬记的。有时可以变概念的非本质特征,让学生来辨析,加深他们对本质特征的理解。
4、从具体到抽象,揭示概念的本质
在教学中既要注意适应学生以形象思维为主的特点,也要注意培养他们的抽象思维能力。在概念教学中,要善于为学生创造条件,引导他们通过观察、思考、探求概念的含义,沿着由感性认识到理性认识的认知过程去掌握概念。这样,可以培养学生的逻辑思维能力。
1 揭示概念本质。课改对于概念教学的要求是淡化概念表述的“形式”,而注重其“实质”。具体地说,教学时对一些概念的定义形式不必花大力气,对一些文字叙述较繁的概念不必要求学生背诵,对涉及的一些较深的理论不必去深究,但对概念的实质要理解,要引导学生通过分析、比较、综合、抽象、概括等逻辑思维方法,把握事物的本质和规律,从而掌握概念。例如分式概念的教学,通过实例引导学生分析、综合,找出分式的特点:一是具有形式“a/b”;二是形式中的a、b表示整式;三是形式中的b必须含有字母;这三个条件缺一不可。这样一来,概念的`特征一目了然,学生易于接受,便于掌握。
为让学生充分理解概念,在呈现概念的定义之后,还需要向学生呈现概念的正反例证。呈现的例证要在本质属性上有变化,以利于学生正确地理解概念。如呈现了方程的定义后,接着给学生呈现一些有变化的例证:x=5,a+5=c。另外,还要呈现一些反例来从反面说明,如3+2=5,y7等。
2 加强概念类比。“有比较才有鉴别”。数学的一些概念和规律,理论性较强,而且比较抽象,如果将它与学生熟悉的(已知的)相关实体(事物)进行比较,就能帮助学生理解概念、掌握规律。例如,在教分式这个概念的时候,教师可以将其与学生已经学过的分数进行类比。由分数的分子分母是整数,类比得出分式的分子分母应该是整式。这样做,将新的内容放到学生熟悉的环境中,既提高了学生的兴趣,又降低了学生学习的难度。
3 重视运用变式。所谓变式,就是变换提供给学生的各种感性材料的表现形式,使其非本质属性时有时无,而本质属性保持恒在。如“方程”的变式中,“含有未知数的等式”这一本质不变,但未知数的个数、位置、表示的方式等有变化。教师要引导学生通过分析、对比,运用概念的特征对正反例证作出正确分类,把握事物隐藏的本质属性,克服思维定势的负效应。
小学生的思维还处于具体形象思维的阶段,对于数学课本上的专业术语理解困难,教师在讲解时,因为用词不当容易引起学生的误解,繁琐的解释甚至还会引起学生对数学产生厌烦心理。因此,教师可根据小学生好奇的心理,将抽象的词语转化为小学生容易接受的具体事物来举例说明。例如“平均数”表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标,解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总分数。这种专业术语教师也不知道该怎样解释学生才能听懂,此时教师就可以通过生活中的例子来为学生们说明平均数的概念:老师带来了五个苹果来教室,这个时候教室里坐着五个同学,老师便把这五个苹果分给了五个同学,每个同学都得到了一个苹果,十分高兴。每个同学手里都有一个苹果,这“一个苹果”就是平均数。教师用形象的例子为学生解释了平均数的含义,浅显易懂,学生形象地理解了“平均数”这一概念的本质特征,记忆牢固,大概了解了平均数的基本算法,教师再紧跟教材讲解课本上的运算方式,有效训练了学生的思维,提高了教学效率。
小学生好奇心极重,在好奇心的驱动下,对知识会产生强烈的渴望,教师用提问的形式引导学生思考,能够让学生在自由的氛围下散发思维,锻炼自己的数学能力,提高对数学概念的理解能力。例如在学习乘法时,学生没有多大的概念,教师就可以根据以前学过的加法知识通过提问引入对乘法知识的讲解:这里有三个书包,每个书包里装有两本书,请同学们先算一算这里一共有几本书?学生运用自己学过的加法知识很快算出了答案,这时老师再提问:还有没有更简单的算法将这几本书的数量算出来?事先预习过的学生应该对乘法已经有所了解,但仍与大部分学生一样对这种枯燥的词语感到生涩,教师在复习了加法知识的基础上,延伸出新知识乘法的概念,学生在经过思考后思维已经活跃起来,对于乘法的概念能够很快吸收理解并运用。
数学源于实践,又应用于实践。有些抽象的概念在经过动手实践之后一目了然,而小学生的动手能力极强,教师便可以根据这一特点,由表入里,由浅入深,引导学生探究数学规律。例如在教学“平行四边形的面积”时,由于之前学生并没有接触过这种形状,大脑一片空白,没有任何解题思路,因此,教师在课前就可以要求学生找到数学辅助工具包里的火柴棍和橡皮筋,将其绑成一个长方形,上课时,教师便要求学生把已经做好的长方形模具拿出来,观察教师是如何将长方形转化为平行四边形的,由此引出平行四方形的定义,方便进入“平行四边形面积”的教学内容。教师让学生先求出长方形的面积,再运用学过的知识通过自己的方法求出平行四边形,甚至可以用直尺对自己做好的模具进行测量,鼓励学生发散思维,用自己能想到的方式对平行四边形的面积进行计算,最后自己探索出求平行四边形面积的运算方式,通过动手实践、运用旧知识来解决新问题,学生的思维在兴趣的驱使下得到锻炼,使他们体会到成功的喜悦。
小学数学概念教学: 理论与实践大全【第七篇】
最近读了郑熔虹老师著的《数学教学的激情与智慧》这本书。郑老师在这本书中以朴实的文风,平实的教育教学案例记录着她对新课程下的数学课堂的见解,记录着她的平淡而美丽的教学生活,记录着她和孩子们幸福的每一个瞬间。细细读来,让我感触颇多,收获颇多。下面谈谈我的感受。激情与智慧,是人们获得知识和技能的一种力量,是启发人们学习积极性的重要心理成份。激情对各门学科的学习,学生的成长、成才等都有巨大的作用。因此,激发和培养学生浓厚的学习激情,是提高教学质量的一个重要途径。让课堂充满关注生命的气息,让生命的活力充分的涌流,让智慧智慧尽情绽放,让师生之间和同学之间充满真诚的关怀,是生命化教育的自觉追求。
一、营造民主、平等、和谐的氛围。
在教育教学中教师要真正地把学生当作学习的主人,用商量的口吻,轻松的儿童化的语言与学生交流,使学生感到教师是自己的亲密朋友,让教师成为名副其实的组织者、合作者、参与者。学生的学习不只是一个单纯的认知过程,学习本身还包含情感等因素。所以,教师必须关注学生的情感与态度,满足学生的心理需要。因为没有情感的教育是没有生命的教育。有效的学习往往与学生学习中的情感因素密切相关。“新课标”指出:“要关注学生的学习结果,更要关注他们的学习过程,要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助他们认识自我,增强信心。”因此,教师应多角度给予学生客观、公正,积极的评价,从而强化学生学习的意志。每个学生都渴望得到老师的关注或他人的信任、理解和认可,得到老师的尊重、鼓励、肯定。这种欲望正是他们参与学习活动的内驱力。这时,教师积极的评价对调动学生的学习情感有着重要作用。有时老师一个满意的微笑,一个会意的点头,一句安慰的话语“别着急,慢慢来。”一句由衷的赞美“你观察得真仔细”、“你真棒”都会使学生久久不忘,使他们有信心,有意志去克服学习中的各种困难。另外,不同的学生,学习的方法也不同,我们要学会欣赏学生的一切努力,尊重学生个性化的学习,宽容学生的幼稚乃至胡思乱想;给他们机会,给予他们公正评价,积极地引导。只有这样为他们创造和谐、宽松的氛围,才能充分调动学生们的学习激情。
二、创设情境,激发激情。
在现实生活中经常能听到“数学真没味道”,“我不喜欢上数课。”……诸如此类的埋怨声、诉苦声。是的,许多数学知识学起来比较枯燥,难以激发学生的兴趣。但如果我们在教学中多点调料,那结果可能会出乎我们的意料。创设交流探讨的机会,让孩子们在整个教学过程中自主尝试、自主思考、自主发现、自主交流反馈,教师适时点拨,把知识的探究过程留给学生,问题让学生去发现,共性让学生去探讨,规律让学生去揭示,让学生在自主探究中能力得到进一步的.提升。凡是学生自己会学的,就应该创造条件让学生自学。尽量给学生提供自我学习的机会,这样,数学知识就在学生的自主探究中获得,使数学问题变为活生生的现实,使抽象的数学知识变得生动有趣,达到了拓展教材内容,又活化了教材内容,既增强学生对数学内容的亲切感,又激发学生学习数学的激情。
三、动手操作,激发激情。
给孩子们提供操作机会,使他们多种感官参与活动,丰富自己的感性认识,以动促思,动中释疑,促进知识与能力的协同发展。动手操作符合小学生的生理、心理特点,符合他们的认知水平,有利于学生参与知识形成的全过程,有助于学生理解知识,发现规律,充分调动他们的学习兴趣。动手操作过程是知识学习的一种循序渐进的探索过程。教师要创造一切条件,创设让学生参与操作活动的环境,多给学生活动的时间,多让学生动手操作,多给学生一点自由,学生就会在“动”中感知,在“动”中领悟,在“动”中发挥创新的潜能。为此,教师在教学中就要给学生提供自主探索的机会,引导学生去动手实践,自主探索和合作交流,让学生经历知识的形成、发展过程,把外显的动作过程与内隐的思维活动紧密地结合起来,把朦胧模糊的各种想法转化为实实在在的行为,培养学生初步的探索精神。
品读着郑老师的教育心路的历程,欣赏着她的优秀的教学设计和精彩的课例,使我深深的感受到成为一名好教师的不易呀。努力,加油。
小学数学概念教学: 理论与实践大全【第八篇】
听了康教师的课,本人受益匪浅。康教师整节课充分体现了让学生成为数学活动的主人,教师只是数学活动的组织者、引导者和合作者的基本理念。在教学过程中,教师本着科学、新颖、实用的原则,使整堂课体现出新趣活实四个特点:
一新:教学理念新。本课教师在组织形式、教学方法、师生主角转换、评价多元化、学生主体参与等诸多方面进行了大胆的改革与创新,从而大大激发了学生的学习兴趣,提高了学习效率。
二趣:教学过程趣。本课教师注重给学生供给充分从事数学活动的机会,如从举左右手到找身体中有左右之分的部位,再到介绍左右两边的同学,再到淘气家的位置、整理学具等等,无一不让学生感觉到学生来源于生活,学习数学是一个充满乐趣的过程。
三活:教学方法活。本课教学中,教师转变了传统的教学方式,让学生在充分的自主探索与合作交流的基础上学习知识。如在体验左右的相对性环节,教师不是直接的告诉,而是让学生在充分的体验基础上,进行交流,从而自行体会到左右的相对性。
四实:教学结果实。本课的教学效果十分好。孩子们能在良好的课堂教学氛围中,学有所得、学有所获。不一样层次的孩子都得到了应有的发展,到达了预期的教学目标。
总之,本课教师在充分理解教材、掌握教材的基础上,创造性地使用教材,紧密联系学生的生活实际,使每个教学环节紧紧相连、环环相扣、活而有序。在此不难发现,学生的主体地位得到应有的凸显,孩子们自主探究的学得到有效落实。自然这样的课堂是生动的、鲜活的。
文档为doc格式。