首页 > 学习资料 > 教学设计 >

《圆的认识》教学设计【范例4篇】

网友发表时间 2299038

【导言】此例“《圆的认识》教学设计【范例4篇】”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

《圆的认识》教学设计及课后反思【第一篇】

课前慎思

《圆的认识》一直是小学高年级数学的教学内容,几乎所有小学数学教学领域的名师大家都用过这节课来“吟诗作画”,各领风骚;后生新秀们更是频频用这节课来“小试牛刀”,异彩纷呈。

我在欣赏品味之余,发现我们对于“圆的认识”这节课教学内容的处理,主要存在以下三个问题:第一,注重组织学生通过折叠、测量、比对等操作活动来发现圆的特征,不重视通过推理、想象、思辨等思维活动来概括出圆的特征;第二,注重让学生学会“用圆规画圆”,不重视让学生思考“为什么用圆规可以画出圆”;第三,注重数学史料的文化点缀,不重视数学史料文化功能的挖掘。

我思考――“圆的认识”这节课究竟要讲什么?

我思考――“特征”是指“一事物区别于他事物的特别显著的征象、标志。”(《辞海》)那么,圆的特征究竟是什么?曲线围成、没有角、半径是直径的一半,是不是特征?“一中同长”的特征是不是需要下发空白研究报告,组织学生小组合作研究?这是不是为了“研究报告”而组织研究?这是不是教学上的形式主义?

我思考――半径和直径是不是应该“浓墨重彩”去渲染? “圆”的概念都没有给出,是否需要咬文嚼字地概括出“半径”和“直径”的概念?揭示两者概念后,让学生从一个圆内各个不同的线段中挑出“半径”和“直径”,有没有哪位老师见过学生有错?学生都不会有错的活动,要不要组织?这样的活动是不是教者自作多情、自娱自乐?

我思考――半径和直径的关系是不是教学难点,要不要研究,是否“顾名思义”就可以理解?得出关系后的填表练习,究竟是练习的两者关系,还是练习的乘以2和除以2的口算?我们是不是总是好为人师,以为我们不讲学生就不会?是的,熟能生巧,但熟还能生厌,那熟是不是还能生笨呢?现在的学生在课堂上是不是很少“不懂”装“懂”,而更多的是不是精明地“懂”装“不懂”?

我思考――量出半径都相等,就科学、深刻吗?在一个圆内,半径和直径真的画不完吗?画不完就能说明“半径有无数条”吗? “半径都相等”和“直径都相等”要不要加上前提条件“在同一个圆中或等圆中”?我们说“正常人的两条腿是一样长的”,怎么不加上前提条件“在同一个人身上”?以后再说“正方形的四条边都相等”,还要不要加上“在同一个正方形中”呢?数学上的严谨就是这样的吗?要加上前提条件“在同一个圆中或等圆中”,这是不是教学内容上的形式主义?

我思考――圆的画法是应该教,以促进学生更好地学,但应该一、二、三地教吗?是不是在学生容易疏忽的两个地方“手拿住哪里”、“两脚之间的距离是直径还是半径”点破就可以了?学生抑或老师画出的不圆,是否就该随手擦掉?那些“不圆”的作品,是不是课堂中的生命体?是否应该珍惜?

我思考―― 我们的小学数学教学是否应该不仅关注“是什么”和“怎样做”,还应该引导学生去探究“为什么”和“为什么这样做”?这样是不是才凸显出“数学是思维的体操”这一学科特色?是不是应该带领学生经历从现象到本质的探究过程,促使学生养成研究问题的良好意识?“问题是数学的心脏”,我们数学老师是否可以给学生一个问题模式,让学生“知道怎样思维”,让学生掌握作为一种“非言语程序性知识”的思维?

我思考――“圆”的意蕴实在是丰富,借着这么“圆满”的素材,我们是否可以在培养学生批判思维和突破常规的创新思维上做些文章,引导学生思考“一定这样吗”?柳暗花明、曲径通幽、殊途同归的心理体验,是否更有利于学生的可持续发展?

我思考……

经过一段时间的慎思明辨,我认识到“圆”这一节课应该讲的有价值的东西实在是太多,有舍才有得,一课一得足矣!

教学目标

1. 认识圆的特征,初步学会画圆,发展空间观念。

2. 在认识圆的过程中,感受研究的一般方法,享受思维的乐趣。

教学过程

一、情景中创造“圆”

1.课件创设问题情景。

2.学生表达自己的想法。

3.展示学生的作品。

二、追问中初识“圆”

1.结合学生作品,追问:是什么?为什么?

2.课件动画演示。

3.研讨圆的特征。学生说,古人说。

4.质疑古人说法。“大方无隅”。

三、画圆中感受“圆”

1. 画一个直径为4厘米的圆,并标上半径、直径。

2.从不圆中,感悟圆的画法。

3. 追问“为何这样做?”

《认识圆》教学反思【第二篇】

对于本堂课,我在上课过程中,发现了不少问题,我觉得,主要在一下几个方面应该注意

一、课前准备要充分

课前准备是上好课的排头兵,通过这节课我感觉到课前准备很重要。要布置学生回家找长方体、正方体和圆柱,亲手做钉子板。如果不做好这些准备,课根本就没法上。不是用课件放放就能解决问题的。要一年级孩子做9的确是为难他们了,但在家长的帮助下,孩子们做得还是不错的,但有一个问题,有的学生钉子板上的间距没有空耗,所以围出来的图形不太像。

二、课堂组织要有序

本节课有很多需要动手操作的地方,一提到操作马上学生就兴奋起来了,玩玩积木,玩玩钉子板,忙得不亦乐乎,以至于我让他们摸长方体的面时,有学生手里还拿着圆柱,根本就不听老师的指挥。相比前一单元的计算教学,课堂秩序要乱了很多,所以也耽误了上课的进度。小孩子今天很兴奋的原因,我想也和平时较少有机会动手有关,如果能经常安排这样的活动,学生就会习以为常了。

三、课堂语言要精练

今天上课语言有些罗嗦,甚至可以说是“韶”,所以课堂上学生反而不知道老师说的哪句话是重点,对老师说的话也是“东耳朵进,西耳朵出”。精练、简洁、充满激情的语言是我要努力的方向。

圆的认识教学设计【第三篇】

教学内容:九年义务教育人教版六年制小学数学第十一册第106---109页,圆的认识和圆的画法,完成练习二十五。

教学目标:

1.进一步认识圆,知道并理解圆的各部分名称;了解圆的特征,理解直径和半径的关系;学习用圆规画圆,初步能按要求画圆。

2.在数学活动中让学生经历知识再发现、再创造的过程,完成知识的意义赋予,从中培养探究意识、发现能力和解决简单实际问题的能力。

3.体验圆的美,享受成功的喜悦。

教学具准备:圆规、剪刀、水彩笔、白纸、直尺、一副三角尺、绳子、羊的头饰、一元硬币。

教学过程

一、揭题

1.直线图形

师:(出示三角形、长方形、正方形、平行四边形、梯形的平面图)三角形、四边形都是由线段围成的平面图形,线段有什么特点?

生:线段有两个端点,是直的,可以度量。

师:所以我们称三角形、四边形是平面上的直线图形。(板书:直线图形)

2.曲线图形

师:(出示圆的平面图)这是我们学过的……

生:齐说“圆”(板书:圆)

师:相对于线段围成的直线图形,圆是由曲线围成的,所以我们称圆是平面上的一种曲线图形。(板书:曲线图形)

3.引入圆的特征讨论

师:想一想:你周围的物体上哪里有圆?

生:(举例略)

师:同学们一年级时就初步认识过圆,现在都六年级了,你现在知道多少有关圆的知识?

生①:圆是一种优美的图形,建筑设计中应用广泛,如:圆形花坛,圆形装饰图案。生②:圆形便于滚动,所以车轮都是圆的。

生③:一张白纸经折叠后可以剪出一个近似的圆。

生④:(举起自己的圆规)这是圆规,用它可以画圆。

师:车轮为什么是圆的?为什么用圆规可以画出圆来呢?这就需要认识圆有什么特征,下面就来学习“圆的认识”。(板书:圆的认识)

二、新课

1.圆的画法

(1)自由画

师:拿出自己的圆规,在白纸上画一个圆。(师板书:画圆)

生:独立画

师:谁能说说你是怎样画出来的?

生:……(用自己的话描述)

师:谁能用老师的教具圆规上黑板上画圆?(让两名同学上黑板画,提醒其余同学仔细观察他们是怎样画的?)

反馈①:一只手摁住圆规固定的脚,另一只手使圆规的另一只脚旋转,顺利画出圆。

反馈②:教具圆规不好使唤,想固定的那只脚不停移动,用力过猛又使圆规两脚的距离发生变化,无法画出圆。

师:为什么这位同学用圆规能轻巧地画出圆,而另一位同学却画不出圆呢?

(点拨总结出画圆的步骤:“分开”、“固定”、“旋转”。分别板书)

2.认识圆心

师:(以黑板上学生画的圆为例)用圆规画圆时针尖固定的这一点(用彩色粉笔点出)叫圆心(板书“圆心”)一般用字母O来表示(标出:O)。请同学们在自己画的圆上点出圆心,标出字母O。

生:独立完成。

3.认识半径

师:举起你们刚才画的圆,互相看一下,都一样大吗?

生:不一样大。

师:为什么大的大,小的小,与什么有关?

生:与圆规两脚分开的大小有关。

师:你们的意思是圆规两脚间的距离长时,画出的圆大,两脚间的距离短时,画出的圆就小。请在你的圆上画出一条表示两脚间距离的线段。

生:独立画。

师:(以黑板上学生画的圆为例)请同学们仔细看,圆规的一只脚固定在圆心O,当另一只脚旋转到A点时,圆规两脚间的距离是OA(画出线段OA);当另一只脚旋转到B点时,两脚间的距离是OB(再画出线段OB)

问:线段OA和OB相等吗?

生:相等。

师:你是凭观察得出的,那怎样验证呢?

生:测量。

师:指名上黑板测量OA与OB的长并报告测量结果。

生:确实一样长。

师:在这个圆的曲线上,像A、B这样的点可以找出多少个?

生:无数个。

师:表示两脚间的距离的线段可以画多少条?设想一下它们的长度如何?

生:无数条且长度都相等(板书)

师:我们刚才研究的画圆时圆规两脚间的距离就叫做圆的半径(板书:半径)一般用字母r来表示。给你们刚才画的半径标上r。

师;半径这条线段的一个端点在哪里,另一个呢?

生:一个端点在圆心,另一个端点在圆的曲线上。(板书:圆心圆的曲线上)

师:那什么叫半径呢?

生:用自己的话说(师完成半径定义的板书)

师:同一个圆里,半径有什么特点?

生:无数条且长度都相等。

4.认识直径

师:把自己画的圆剪下来

生:独立剪

师:示范对折,打开,出现一条折痕,用食指摸折痕;换个方向再重复一次。

生:在教师示范下同步进行。

师:像这样再重复折几次

生:独立对折、打开、摸折痕。

师:你折了好多次,可以发现什么?

反馈①:每折一次出现一条折痕。

追问:你折了几次,出现了几条折痕,与他不一样的呢?像这样的折痕在你的圆里能再折出来吗?

反馈②:对折后圆的两边能完全重合,圆被平均折成两份。

反馈③:每折一次出现一条折痕,每条折痕都是圆上的线段。

反馈④:这些折痕相交于圆心。

追问:你对折出几条折痕,谁折出的折痕比他多,他说的结论正确吗?在你的圆里,这样的折痕可以折出多少条?这个结论正确吗?

反馈⑤:这些折痕都一样长。

追问:怎样验证?

生:测量

师:量出你圆里每条折痕的长度

生:汇报结果。(指导学生说:“在我的圆里,……”)

师:刚才说了这样的折痕有无数条,所以可以怎样下结论?

生:同一个圆里,所有的折痕长度都相等。

师:谁能给“折痕”起个名字?

生:直径(板书:直径)

师:直径一般用字母d来表示,在自己的圆里给折痕画出一条直径,标上字母d。

生:完成

师:同一个圆里,直径有多少条,长度有什么特点?

生:略

师:直径这条线段,它通过了…?它的两个端点分别在哪里?

生:通过圆心,两个端点都在圆的曲线上。(完成直径定义的相应板书)

反馈⑥:这些折痕的长度是半径长度的2倍或直径的长度是半径的2倍。

师追问:你是怎样得出这个结论的,说说道理。

生①:直径通过圆心,以圆心为界,可以把直径分成两条半径。

生②:在我的圆里,经过测量可以验证这个发现,我的圆里直径的长度都是□厘米,半径的长度都是□厘米,所以说直径是半径长度的2倍。

师:换过来说,半径的长度就是直径的……。生:略师:写出字母公式:d=2rr=d2,注意强调“同一个圆里”。

(以上6点反馈,学生说出多少就处理多少,先说出哪一点,就先处理那一点。)

三、巩固

1.第108页“做一做”。用彩色笔标出下面各圆的半径和直径。

2.第109页练习二十五第3题。已知半径长求直径;已知直径长求半径。

(此项练习放在直径与半径长度关系揭示后进行)

3.学习按要求画圆。完成第108页“做一做”(画半径是3厘米的圆)。

教师示范,引导学生逐步完成。

(1)在作业本适当的地方点一个点做圆心,要考虑上、下、左、右的间距。

(2)以圆心为起点,向右水平方向画一条3厘米长的线段。

(3)圆规一脚固定在圆心,另一只脚在3厘米长线段的终点处,然后绕圆心旋转。

(4)标出字母o、r、d。

4.第109页练习二十五第2题。为什么车轮都要做成圆的,车轴装在哪里?

与圆的特征有关。因为圆曲线上的每一点到圆心的距离相等,车轴装在圆心,车轴到地面的距离永远是半径,这样车轮行驶平稳。(配图:如果车轮在水平的路面上行驶,车轮运行时车轴移动形成的直线(轨迹)与地面平行)

5.阅读第109页第5题,独立填书。

想:怎样测量1元硬币的直径?

让学生在实物投影上边演示边说。

圆的认识教学设计【第四篇】

教学目标 :

1、认识圆,知道圆的各部分名称,知道同一圆内半径、直径的特征,初步学会用圆规画圆。

2、使学生掌握圆的特征,理解在同一个圆里直径与半径的关系,能根据这种关系求圆的直径或半径。

3、培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念,使学生初步学会用数学知识解释、解决生活中的实际问题。

教学重难点 :

掌握圆的特征,理解在同一个圆里直径和半径的关系,能根据这种关系求圆的直径或半径。

教学准备 :

多媒体一套。学生准备硬币等圆形物体若干;圆规一把、直尺一把、三角尺一副;小剪刀一把;红色、蓝色彩笔各一支。

教学过程 :

一、导入新课

1、导入:同学们玩过套圈游戏吗?如果现在有几位同学要进行套圈比赛,站成什么形状比较合理?

2、你见过圆吗?生活中你在哪儿见过?能说说吗?一直说下去能说完吗?的确圆是无处不在的。(打开有关生活中圆的课件)问:同学们你们从中又看到了圆了吗?你会画圆吗?动手试一试,看谁想的方法多。

3、怎样可以画出一个圆?还有其它方法吗?

师根据学生口答边画圆边归纳方法:

( 1 )定长( 2 )定点( 3 )旋转

请大家用这个方法再画一个圆,并很快把它剪下来。

要进行套圈比赛的圆肯定比较大,用圆规画行吗?怎么办?

4、揭题:为什么站成圆形大家会觉得比较公平呢?

今天我们一起来学习圆的认识(板书课题),相信通过今天的学习大家一定会明白其中的道理。

二、探究新知

(一)认识圆心

1、圆形画好了,游戏可以开始了吗?套圈用的瓶子要放在哪儿呢?

2、你能很快找出圆的中心吗?试一试,找出刚才剪下的圆的中心。谁先发现,谁就先上来介绍。

说明:圆的中心叫 “ 圆心 ” ,就是画圆时针固定的一点,用字母 O 表示。(师板书:圆心 O )

(二)认识半径

1、圆画好了,瓶子放在圆心了,接下来怎样?(站人)站在哪里?(圆上)哪儿是 “ 圆上 ” ?指给你的同桌看一看,谁能上来指一指?

2、要站在圆上,随便哪一点都可以吗?为什么?怎样证明?(引导学生画一画、量一量)

说明:象这样,连接圆心到圆上任意一点的线段,叫做圆的半径,用字母 r 来表示。

3、你能画出几条半径?

4、认识特点:在同一个圆里,有( )条半径,它们的长度( )

5、想一想:( 1 )画圆时,圆规两脚间的距离其实就是圆的什么?针尖固定的一点呢?

6、在白纸上点两个点,以它们为圆心分别画一个半径 2 厘米的圆和一个半径 厘米的圆,比比哪个圆大些?想想圆的大小由什么决定?圆的位置由什么决定?

(三)认识直径及直径与半径的关系

1、刚才我们用折纸的方法确定圆心时,发现圆上有许多折痕。这些折痕叫什么?有什么特点?与半径有什么关系?请大家看看书、动动手画一画,看看能画几条?并在小组中说一说。

2、组织学生交流,教师画直径时有意两端不在圆上,让学生判断。

教师板书:( 1 )直径: d

( 2 ) d=2r 或 r=1/2d

追问:直径肯定是半径的 2 倍吗?你是怎么知道的?看一下你手中圆的直径,会不会是黑板上圆的半径的 2 倍?你认为应该怎么说?(板书:在同一个圆里)

3、口答:画一个直径是 5 厘米的圆,圆规两脚间的距离应是( )

4、完成课本的做一做。

三、全课总结

今天我们一起认识了什么?现在你能解释一下;为什么玩套圈游戏时大家站成圆形、瓶子放在圆心比较公平吗?

四、延伸拓展

1、同学们想一起到篮球场玩套圈游戏,你会怎么安排?说说你的想法。

2、在篮球场上要画一个直径 6 米的大圆,至少要准备一根多少米长的绳子?

站在这个圆上的同学中,离得最远的两个同学最多相距多少米?

追问:依据是什么?怎样证明 “ 两端在圆上的线段中,直径最长?

3、利用发现的规律你能测出硬币等圆形物体的直径吗?

4、生活中哪些物体必须做成圆形的,为什么?

(课件出示两辆跑车)让学生展开讨论:车轮为什么是圆的?

讲述:同学们,其实何尝是大自然对圆情有独钟?在我们人类生活中的每一个角落里,圆都扮演着重要角色,都成了美的使者和化身。(显示生活中圆的魅力)

相关推荐

热门文档

22 2299038