首页 > 学习资料 > 教学设计 >

教育政策制定者比例的基本性质教学设计热选【精编10篇】

网友发表时间 2385742

【写作参考】一篇好的范文往往能让您的写作事半功倍,下面是由阿拉题库网友为您分享的“教育政策制定者比例的基本性质教学设计热选【精编10篇】”优质范例,供您写作参考之用,轻松写作,远离加班熬夜,希望以下内容对您有所帮助,喜欢就下载支持吧!

教育政策制定者比例的基本性质教学设计【第一篇】

1、使学生进一步理解比例的意义,懂得比例各部分名称。

2、经历探索比例基本性质的过程,理解并掌握比例的基本性质。

一、旧知铺垫。

1、什么叫做比例?]。

:和::和5:2。

:和::和1:4。

3、用下面两个圆的有关数据可以组成多少个比例?

如(1)半径与直径的比:=。

(2)半径的比等于直径的比:=。

(3)半径的比等于周长的比:=。

(4)周长与直径的比:=。

二探索新知。

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的`外项,中间的两项叫做比例的内项。

例如::=60:40。

内项。

外项。

(2)学生认一认,说一说比例中的外项和内项。

如::=:

外内内外。

项项项项。

你能发现比例的外项和内项有什么关系吗?

(1)学生独立探索其中的规律。

(2)与同学交流你的发现。

(3)汇报你的发现,全班交流。

板书:两个外项的积是×40=96。

两个内项的积是×60=96。

外项的积等于内项的积。

(4)举例说明,检验发现。

如::=:。

两个外项的积是×=。

两个内项的积是×=。

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:=。

2、4×40=×60。

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5)归纳。

教育政策制定者比例的基本性质教学设计【第二篇】

2、了解比和比例的区别与联系。

2、在已有知识的基础上,结合实例引出新的知识。

情景图、多媒体课件、习题卡。

出示课题:比例。

看到课题你想到了以前学过的什么知识?(生1,生2等回答)。

我们已经了解了比的这些知识,请做下面练习。

求下面各比的比值。

18:453::。

求完比值你觉得哪些比有联系?

师:相机板书:3:5==?

今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?

板书完整课题:比例的意义。

(师趁机板书在黑板右上角)。

本节课我们就来完成这两个目标:

设计意图:对学生同时进行思想品德教育和爱国教育。

生各抒己见。

你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。

自学指导:

1、请每位同学任选两面国旗,分别计算出它们长与宽的比值和宽与长的比值。

2、发现了什么有趣的现象?

3、把你的发现尝试用算式写下来。

(5分钟后,期待你精彩的分享)。

(二)自学。

学生认真看书自学,教师巡视,督促人人都在认真地思考。

(三)汇报分享。

谁愿意把你的结果和大家分享?师相机板书。

(1)15:=10:(2)60:15=40:10(3)…(4)…。

原来在国旗中有这么多的相等关系。国旗的缩放是按比例进行的。

我们把比值相等的两个比用等号连起来。这样的式子就是比例。请同学读数学课本,40页,用笔勾画出重点词句,并读一读。

师:你还能写出两个比组成的比例吗?先自己选,再在小组里说一说。

生:…。

师:你能根据自己的理解说说什么叫做比例吗?先同桌互说,再小组内互相说一说,再指名汇报。

擦去开始板书中的“?”并把比例可用分数形式表示板书出来。

师:你能说一说组成比例要具备哪些条件吗?

生:…。

生:…。

下面各比能组成比例吗?你是怎样判断的?请写出计算过程。

(1)3:7和9:21。

(2)15∶3和60∶12。

1、把下面的式子进行归类:

(5)72:8=3x3(6):6=。

比:

比例:()。

思考:你快速做出判断的原因是什么?明白了比和比例有什么区别?

2、判断:

(1)、有两个比组成的式子叫做比例。()。

(2)、如果两个比可以组成比例,那么这两个比。

的比值一定相等。()。

(3)、比值相等的两个比可以组成比例。()。

(4)、∶与2∶6能组成比例。()。

(5)、组成比例的两个比一定是最简的整数比.()。

1、写出比值是7的两个比,并组成比例。

2、12的因数有(),从12的因数中挑选4个数组成比例是()。

今天这节课你有什么收获?

第43页第2、3题。

判断下面每组中的两个比能不能组成比例。

30:5和48:812:和3:5。

表示两个比相等的式子叫做比例。

比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

本节课属于概念教学,分五个环节设计教学,利用十五个问题贯穿整节课,以问导学,以问导疑,以问导思,以问导获,注重培养了学生的各种能力,全课体现了以下几个特点:。

1.关注了学生已有的知识与经验。课的开始从引导学生复习比的知识入手,通过求比值相等的两个比,可以用“=”连起来,自然而然的`引出比例,这样的设计符合学生的认知规律。

2.注重数学知识与生活的联系。数学来源于生活,更应用与生活,本节课从从学生熟悉的国旗引入比例,在求大小不同的国旗的长与宽的比值中学习比例的意义,通过观察、探讨大大小小的国旗的长与宽、宽与长、长与长、宽与宽的比值关系中,加深学生对比和比例的关系,比例意义的理解和掌握。最后通过照片,让学生感受到数学知识离不开生活,生活中处处有数学知识。

3.课堂采用以问导学的策略,用十五个问题贯穿了整节课,以问题引导学生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。

4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。

5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。

教育政策制定者比例的基本性质教学设计【第三篇】

比例的意义(教材第40页的内容)。

1、理解和掌握比例的意义。

2、了解比和比例的区别与联系。

2、能用比例的意义判断两个比能否组成比例。

1、认识比例,理解比例的意义。

2、在已有知识的基础上,结合实例引出新的知识。

情景图、多媒体课件、习题卡。

出示课题:比例。

看到课题你想到了以前学过的什么知识?(生1,生2等回答)。

我们已经了解了比的这些知识,请做下面练习。

求下面各比的比值。

18:453::。

求完比值你觉得哪些比有联系?

师:相机板书:3:5==?

今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?

板书完整课题:比例的意义。

预设:生:1、比例的意义是什么?

生:2、比例的意义有什么作用?

(师趁机板书在黑板右上角)。

本节课我们就来完成这两个目标:

设计意图:对学生同时进行思想品德教育和爱国教育。

生各抒己见。

你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。

自学指导:

1、请每位同学任选两面国旗,分别计算出它们长与宽的比值和宽与长的比值。

2、发现了什么有趣的现象?

3、把你的发现尝试用算式写下来。

(5分钟后,期待你精彩的分享)。

(二)自学。

学生认真看书自学,教师巡视,督促人人都在认真地思考。

(三)汇报分享。

谁愿意把你的结果和大家分享?师相机板书。

(1)15:=10:(2)60:15=40:10(3)…(4)…。

原来在国旗中有这么多的相等关系。国旗的缩放是按比例进行的。

我们把比值相等的两个比用等号连起来。这样的式子就是比例。请同学读数学课本,40页,用笔勾画出重点词句,并读一读。

师:你还能写出两个比组成的比例吗?先自己选,再在小组里说一说。

生:…。

师:你能根据自己的理解说说什么叫做比例吗?先同桌互说,再小组内互相说一说,再指名汇报。

出示“比例的意义”概念。

擦去开始板书中的“?”并把比例可用分数形式表示板书出来。

师:你能说一说组成比例要具备哪些条件吗?

生:…。

生:…。

下面各比能组成比例吗?你是怎样判断的?请写出计算过程。

(1)3:7和9:21。

(2)15∶3和60∶12。

1、把下面的式子进行归类:

(5)72:8=3x3(6):6=。

比:()。

比例:()。

思考:你快速做出判断的原因是什么?明白了比和比例有什么区别?

2、判断:

(1)、有两个比组成的式子叫做比例。()。

(2)、如果两个比可以组成比例,那么这两个比。

的比值一定相等。()。

(3)、比值相等的两个比可以组成比例。()。

(4)、∶与2∶6能组成比例。()。

(5)、组成比例的两个比一定是最简的整数比。()。

1、写出比值是7的两个比,并组成比例。

2、12的因数有(),从12的因数中挑选4个数组成比例是()。

今天这节课你有什么收获?

第43页第2、3题。

判断下面每组中的两个比能不能组成比例。

30:5和48:812:和3:5。

比例的意义。

表示两个比相等的式子叫做比例。

比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

本节课属于概念教学,分五个环节设计教学,利用十五个问题贯穿整节课,以问导学,以问导疑,以问导思,以问导获,注重培养了学生的各种能力,全课体现了以下几个特点:

1.关注了学生已有的知识与经验。课的开始从引导学生复习比的知识入手,通过求比值相等的两个比,可以用“=”连起来,自然而然的引出比例,这样的设计符合学生的认知规律。

2.注重数学知识与生活的联系。数学来源于生活,更应用与生活,本节课从从学生熟悉的国旗引入比例,在求大小不同的国旗的长与宽的比值中学习比例的意义,通过观察、探讨大大小小的国旗的长与宽、宽与长、长与长、宽与宽的比值关系中,加深学生对比和比例的关系,比例意义的理解和掌握。最后通过照片,让学生感受到数学知识离不开生活,生活中处处有数学知识。

3.课堂采用以问导学的策略,用十五个问题贯穿了整节课,以问题引导学生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。

4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。

5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。

教育政策制定者比例的基本性质教学设计【第四篇】

教学内容:教科书第45页的例5,“试一试”,“练一练”,练习十的第5~8题。

教学目标:

1、使学生学会解比例的方法,会应用比例的基本性质解比例,进一步理解和掌握比例的基本性质。

2、让学生在经历探究的过程中,体验学习数学的快乐。

教学重点:

学会解比例。

教学难点:

掌握解比例的书写格式。

教学准备:多媒体。

教学过程:

一、导入。

1、小练笔:

在()里填上合适的数。5:4=():124:()=():6。

2、教师:前面我们学习了一些比例的知识,谁能说一说怎样填空的?

二、新授。

(1)读题审题,理解题意。

(2)引导分析,写出比例。

如果把放大后照片的宽设为x厘米,那么,你能写出哪些比例?引导学生写出含有未知数的比例式。

师介绍:“像上面这样求比例中的未知项,叫做解比例。

(3)找到依据,变形解答。

讨论:怎样解比例?根据是什么?

教育政策制定者比例的基本性质教学设计【第五篇】

1、通过自主探究,学生能理解比例的基本性质,认识比例的各部分名称。

3、激发学生学习兴趣。

教学重点:。

1、认识比例的各部分名称。

教学难点:。

知识链接:。

教学过程:。

一、创设情境,明确目标。

1、什么叫比例?

2、下面的比能组成比例吗?你是怎样判断的?

:和60:40。

二、导学探究,建立模型。

(一)导学探究,解决问题。

1、导学提示,明确方向。

请自学教材41页例1之前的内容,然后小组合作,完成下面的问题。

1)比例各部分的名称是什么?

3)请自己任意举例,验证你的发现。

4)试着。

总结。

2、自主学习,解决问题。

(二)展示交流,建立模型。

1、学生汇报,重点释疑。

1)组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

2)∶=60∶40。

两外项积是:×40=96。

两内项积是:×60=96。

×40=×60。

学生自主学习,解决问题。

各小组代表汇报。

全班交流。

3)学生举例子,验证发现的规律。

2、归纳小结,建立模型。

在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

三、

练习检测,巩固应用。

1、填空。

1、组成比例的四个数,叫做比例的()。两端的两项叫做比例的(),中间的两项叫做比例的()。

3、在a:7=9:b中,()是内项,()是外项,a×b=()。

来自

4、一个比例的两个内项分别是3和8,则两个外项的积(),两个外项可能是()和()。

2、判断。

(1)因为6×9=18×3,所以6∶3=18∶9()。

(2)在一个比例里,两个内项互为倒数,两个外项也应互为倒数。()。

3、应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

6∶3和8∶∶和4∶50。

四、回顾总结,反思提升。

这节课你有什么收获?

先独立完成,再指名汇报,全班交流,集体订正。

先判断,并说明理由。

巩固学生对比例各部分名称的理解。

巩固学生对比例的意义的理解。

板书设计。

组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

教学反思。

1、在教学比例(特别是分数形式的比例)的各部分名称时,要特别强调哪是外项,哪是内项。

2、本节课充分的体现了学生是学习的主人,提高了学生自主探究的能力。

教育政策制定者比例的基本性质教学设计【第六篇】

1、教学内容:

科教版数学第十二册第74~76页。

2、教材分析:

比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等得基础上教学的,是本套教材教学内容的最后一个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的`思想,而且可以用来解决日常生活中一些具体的问题。教学内容:

教学目标:

培养学生初步的综合和概括能力。教具准备:电脑课件。教学过程:

1、同学们,你们知道吗?我国有着悠久的青铜器铸造史,先秦古籍《考工记》中就有这样记载:(请同学读)。(出示鼎和鉴的图片。)。

(一)教学意义。

1、出示3:5:40:7.5:3。你能把这几组比分分类吗?小组讨论,汇报。(有两种可能:一种是按照形式来分,一种是按照比值来分)板书按照比值来分的情况:3:5和24:40、:和7.5:3。既然它们的比值是相等的,因此我们可以用什么符号来连接呢?(等号)。

2、指出:像这样表示两个比相等的式子叫做比例。

3、那么我们怎么去判断两个比能不能组成比例呢?

4、教学例1:

根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

第一次第二次。

买练习本的钱(元)2买的本数3。

5、出示结果。

教育政策制定者比例的基本性质教学设计【第七篇】

教学目标:

1、使学生认识比例的“项”以及“内项”和“外项”。

3、通过自主学习,让学生经历探究的过程,体验数学学习的快乐。

教学重点:

教学难点:

教学准备:多媒体。

教学过程:

一、导入。

1、找找比比:

(判断下面的比,哪些能组成比例?把组成的比例写出来。)。

3:518:::。

5/8:1/:32:89:27。

学生独立完成,重点说说判断过程。

2、今天我们继续研究比例的有关知识。

二、新授。

1、认识比例各部分的名称。

(1)介绍“项”:组成比例的四个数,叫做比例的项。

(2)3:5=18:30学生尝试起名。

师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。

3:5=18:30。

内项。

外项。

(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?

出示:3/5=18/30。

2、教学例4。

(1)理解题意,信息搜索:

提问:你能根据图中的数据写出比例吗?

(2)、学生写不同比例:

引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。

引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?

(3)、学生探索规律。

学生先独立思考,再小组交流,探究规律。(板书:两个外项的积等于两个内项的积。)。

(4)、写比例,验证规律:

是不是任意一个比例都有这样的规律?学生任意写一个比例并验证。

(5)、师生归纳比例的基本性质:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

3、思考分数形式的比例3/6=2/4,通过连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交叉相乘,结果相等。

4、练习:“试一试”判断能否组成比例。

出示“3.6:1.8和0.5:0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。

能不能组成比例吗?

三、巩固练习。

1、做“练一练”

使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。

2、在()里填上合适的数。

5:3=():64:()=():5。

3、做练习十。

第1。

2题。

四、小结。

通过今天的学习,你有哪些收获?

交流。

五、作业。

完成《练习与测试》相关作业。

教育政策制定者比例的基本性质教学设计【第八篇】

教学内容:

九年制义务教育小学数学教材第十二册第1、2页,练习一第1——3题。

教学目标 :

1、使学生理解并掌握比例的意义和基本性质,学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。

2、认识比例的各部分的名称。             。

3、培养学生的观察能力、判断能力。

学法引导:

教学重点:

教学难点 :应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

教学步骤 :

一、铺垫孕伏。

师:同学们,今天我们数学课上有很多有趣的问题等你来解决,希望大家努力。我们首先来解决两个问题。

(二)反馈:(1)谁买的本子便宜些?能简单地说说你的理由。

(2)还有别的方法吗?

(三)(出示):2、3月10日下午2点,学校8米高的旗杆影子长5米,旁边一棵高120厘米的香樟树影子长75厘米,说出旗杆和香樟树与各自影长的比。(8:5  120:75)。

这两个比能用一个等号连接起来吗?为什么?

二、探究新知。

2、得出结论:表示两个比相等的式子,叫做比例。(板书课题:比例的意义)。

3、完成“做一做”。

下面哪组中的两个比可以组成比例?把组成的比例写出来。(见书上“做一做)。

5、反馈:(1)你给5:8找的朋友是(   ),组成的比例是(   ),向大家介绍你用了什么方法找到的。

6、师生小结:如果判断两个比能否组成比例,最关键是看什么?

1、认识比例各部分的名称。

(1)自学课本。

前几节课上,我们已经知道,比中两个数分别叫做比的前项和后项。今天学习的比例中的四个数也有新名字,想知道吗?请看课本第二页是怎样给它们取名的。

(2)反馈:让学生看下面这些比例,说出它的外项和内项各是多少。

:  =6:4               06:02=:

(2)学生汇报:

我发现在这两个比例里,两个外项的积都等于两个内项的积。

(3)查一查:你随便找几个比例,看一看这些比例中有没有这个有趣的现象?

(学生合作学习,汇报交流,得出结论)。

在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

(板书课题:加上“和基本性质”,使课题完整。)。

3、练一练。

(1)小游戏:下面我们轻松一下,由你出题考老师,规则是:请你说出10以内4个不同的自然数,看老师能为能马上告诉你,它们是否能组成比例?(学生报数,老师回答)。

谁能说出老师的秘诀?

(2)现在轮到我考你:4、3、6、8     6、9、4、7。

(学生回答后让他说出判断理由)。

(3)请你独立用4、3、6、8写比例,然后小组交流讨论,把最好的办法推荐给大家。

(4)阅读教科书第1——2页的内容并填空。

三、全课小结。

这节课我们学会了什么?

四、随堂练习。

1、说一说比和比例有什么区别。

2、练习一第2、3题。

教育政策制定者比例的基本性质教学设计【第九篇】

教学目标:

1、使学生理解并掌握比例的意义,认识比例的各部分名称,探究比例的基本性质,学会应用比例的意义和基本性质判断两个比是否能组成比例,并能正确的组成比例。

2、培养学生的观察能力、判断能力。

教学重点:

学法:

自主、合作、探究。

教学准备:

课件。

教学过程:

一:创设情境,导入新课。

1、谈话,播放课件,引出主题图。

(播放视频,生观察,并说看到的内容)。

师:看到这些画面你的心情怎么样?(激动、兴奋、骄傲、自豪……)。

师:是啊,老师和你们一样,每当听到雄壮的国歌声,看见鲜艳的五星红旗,老师的心情也十分激动,国旗是我们伟大祖国的象征,是神圣的。

问:画面上这几面国旗有什么不同?(大小不一样)。

师:虽然这几面国旗大小不一样,但是长和宽的比值都是一样的,这节课我们就来研究有关比例的知识。(板书:比例)。

(课件出示主题图,让学生说出长和宽各是多少)。

问:你能根据这些国旗的长和宽的尺寸,写出长与宽的比,并求出比值吗?请同学们先写出学校内两面国旗长与宽的比,并求出比值。(生动手写比、求比值)。

二、引导探究,学习新知。

(生汇报求比值的过程)。

师:请同学们观察你求出的学校内两面国旗的比值,你有什么发现?(这两个比的比值相等)。

师:这两个比的比值相等,我用“=”把这两个比连起来,可以吗?(可以)。

师:从图上四面国旗才尺寸中你还能找出哪些比求出比值,也写成这样的等式呢?请同学们自己动笔试一试(生动手写比,求比值,写等式,并汇报)。

师:指学生汇报的等式小结,像这样由比值相等的两个比组成的等式就是比例,谁能概括出比例的意义?(板书课题,生汇报,是板书意义)。

问:判断两个比是否能组成比例,关键看什么?(关键看它们的比值是否相等)。

(小练习,课件出示)。

(1)自学比例的名称。

师:小结通过刚才的学习,我们理解了比例的意义,那么在比例中各部分名称是怎样的,各部分名称与各项在比例中的位置又有什么关系呢?打开书34页,自学34也上半部分,比例各部分的名称。(生自学名称,汇报,师板书名称)。

各小组派一名代表汇报合作学习发现的规律。

师:是不是所有的比例都具有这样的特性呢?分组验证课前写出的比例式。

师:问想一想,判断两个比能不能组成比例除了根据比例的意义去判断外还可以根据什么去判断?(生回答:根据比例的基本性质)。

三、巩固练习(见课件)。

四、汇报学习收获。

教育政策制定者比例的基本性质教学设计【第十篇】

教学内容:

义务教育课程标准实验教科书人教版数学六年级下册。

教学目标:

1.理解和掌握比例的意义和基本性质。

2.能用不同的方法判断两个比能否组成比例,并能正确组成比例。

3.通过观察比较、自主探究,提高分析和概括能力,获得积极探索的情感体验。

教学过程:

一、认识比例的意义。

1.出示小红、小明在超市购买练习本的一组信息。

(1)根据表中信息,你能选出其中两个量写出有意义的比吗?

(学生思考片刻,说出了∶∶∶∶5等多个比,并说出每个比表示的意义。教师适时板书。)。

(2)算算这些比的比值,说说你有什么发现。

(学生说出自己的发现,教师用“=”连接比值相等的两个比。)。

(3)说说什么叫比例。

(学生各抒己见,师生共同归纳后板书:比例的意义)。

评析:比的意义、求比值是这节课所学新知的“生长点”。对此,教师将教材例题后(相当于练习)的一组信息“前置”,这样设计与处理,一是使题材鲜活,导入更为自然;二是把“一组信息”作为学生思考的对象,给学生提供了一定的.思维空间,学生学习的热情和积极性明显提高。“激活旧知”后,教师引导学生主动进行比较、发现、归纳,最终实现了对新知的主动建构。

2.即时训练。

a.判断下面每个式子是不是比例,依据是什么?

(1)10∶11(2)15∶3=10∶2。

a.学生独立思考,小组讨论交流,说说是怎样判断的,进而说明判断两个比能否组成比例的关键是什么。

b.剩下的(1)(2)(4)三个比中有没有能组成比例的?

评析:认知心理学告诉我们,学生对数学概念、规律的认识和掌握不是一次完成的,对知识的理解总是要经历一个不断深化的过程。因此,上例中教师设计了“即时训练”这一环节。即时训练既有运用新知的直接判断,又有变式和一题多用,较好地体现了层次性、针对性和实效性,它对促进学生牢固掌握新知,灵活运用新知起到了很好的作用。

相关推荐

热门文档

22 2385742