首页 > 学习资料 > 教学设计 >

教育工作者比例的基本性质教学设计热选【参考8篇】

网友发表时间 2385732

【写作参考】一篇好的范文往往能让您的写作事半功倍,下面是由阿拉题库网友为您分享的“教育工作者比例的基本性质教学设计热选【参考8篇】”优质范例,供您写作参考之用,轻松写作,远离加班熬夜,希望以下内容对您有所帮助,喜欢就下载支持吧!

教育工作者比例的基本性质教学设计【第一篇】

1、教学内容:

科教版数学第十二册第74~76页。

2、教材分析:

比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等得基础上教学的,是本套教材教学内容的最后一个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的`思想,而且可以用来解决日常生活中一些具体的问题。教学内容:

教学目标:

培养学生初步的综合和概括能力。教具准备:电脑课件。教学过程:

1、同学们,你们知道吗?我国有着悠久的青铜器铸造史,先秦古籍《考工记》中就有这样记载:(请同学读)。(出示鼎和鉴的图片。)。

(一)教学意义。

1、出示3:5:40:7.5:3。你能把这几组比分分类吗?小组讨论,汇报。(有两种可能:一种是按照形式来分,一种是按照比值来分)板书按照比值来分的情况:3:5和24:40、:和7.5:3。既然它们的比值是相等的,因此我们可以用什么符号来连接呢?(等号)。

2、指出:像这样表示两个比相等的式子叫做比例。

3、那么我们怎么去判断两个比能不能组成比例呢?

4、教学例1:

根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

第一次第二次。

买练习本的钱(元)2买的本数3。

5、出示结果。

教育工作者比例的基本性质教学设计【第二篇】

教学内容:教科书第45页的例5,“试一试”,“练一练”,练习十的第5~8题。

教学目标:

1、使学生学会解比例的方法,会应用比例的基本性质解比例,进一步理解和掌握比例的基本性质。

2、让学生在经历探究的过程中,体验学习数学的快乐。

教学重点:

学会解比例。

教学难点:

掌握解比例的书写格式。

教学准备:多媒体。

教学过程:

一、导入。

1、小练笔:

在()里填上合适的数。5:4=():124:()=():6。

2、教师:前面我们学习了一些比例的知识,谁能说一说怎样填空的?

二、新授。

(1)读题审题,理解题意。

(2)引导分析,写出比例。

如果把放大后照片的宽设为x厘米,那么,你能写出哪些比例?引导学生写出含有未知数的比例式。

师介绍:“像上面这样求比例中的未知项,叫做解比例。

(3)找到依据,变形解答。

讨论:怎样解比例?根据是什么?

教育工作者比例的基本性质教学设计【第三篇】

本课教学内容是课程标准人教版六年级32、33页的“比例的基本性质”。这部分内容是在学生初步理解比例意义的基础上教学的,通过教学,使学生认识比例的“项”以及“内项”和“外项”,理解并掌握比例的基本性质;让学生在尝试探索的过程中进一步培养比较、概括的能力,发展符号意识。

学情分析。

本班学生基础能力中等,平时上课发言的学生不是很多,对于这个比例的基本性质的学习是第一次的接触,但本节课难度不是很大,学生领会的能力相信还是可以的。

教学目标。

1、使学生认识比例的“项”以及“内项”和“外项”。

教学重点和难点。

理解并掌握比例的基本性质;引导观察,自主探究发现比例的基本性质。

教学过程。

(一)、复习导入。

1、我们已经认识了比例,谁能说一下什么叫比例?

2、应用比例的意义判断下面的比能否组成比例。

:和:∶和12∶91∶5和∶4;

7∶4和5∶380∶2和200∶5。

(一是看两个比的比值是否相同,二是看他们化成最简比是否相同)。

3、今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例)。

(二)、探究新知。

1、教学比例各部分的名称.

同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第34页看看什么叫比例的项、外项和内项。

板书:

组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如::=60:40。

外项内项学生认一认,说一说比例中的外项和内项。

如:

(1)教师:比例有什么性质呢?现在我们就来研究。

学生分别计算出这个比例中两个内项的积和两个外项的积。

教师板书:

两个外项的积是×40=96。

两个内项的积是×60=96。

(2)教师:你发现了什么,

两个外项的积等于两个内项的积。

是不是所有的比例都存在这样的特点呢?

学生分组计算前面判断过的比例。

(3)通过计算,我们发现所有的比例都有这个样的特点,谁能用一句话把这个特点说出来?(可多让一些学生说,说得不完整也没关系,让后说的同学在先说的同学的基础上说得更完整.)。

(4)最后师生共同归纳并板书:在比例里,两个外项的积等于两个内项的积。教师说明这叫做比例的基本性质。

指名学生改写:=60:40(=)。

这个比例的外项是哪两个数呢?内项呢?

当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积。

怎么样?(边问边画出交叉线)。

(6)强调:如果把比例写成分数的形式,比例的基本性质就是等号两端分子和分母分别交叉相乘的积相等。以前我们是通过计算它们的比值来判断两个比是不是成比例的。学过比例的基本性质后,也可以应用比例的基本性质来判断两个比能不能组成比例。

(三)、课堂作业设计。

2、先应用比例的意义,再用比例的基本性质来判断下面哪组中的两个比可以组成比例。

6:9和9:12。

:和:。

:2和7:10。

(四)、拓展练习。

下面的四个数可以组成比例吗?把组成的比例写下来。(能写成几组就写几组)。

5、8、15和24。

教育工作者比例的基本性质教学设计【第四篇】

九年义务教育六年制小学数学第十二册第10~11页。

师:什么叫比例?下面每组中的两个比能否组成比例?出示:

学生根据比例的意义进行判断,教师结合回答板书:

1/3∶1/4=12∶97∶4≠5∶31∶5=∶480∶2=200∶5。

师:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项(板书:外项、内项)。

师:刚才,你们是根据比例的意义先求出比值再作出判断的。老师不是这样想的,可很快就判断好了,想知道其中的秘密吗?告诉你们,老师是运用了比例的基本性质进行判断的。

同学们在窃窃私语:什么是比例的基本性质?好奇心一下子被激发了。

师:同学们,比例中的两个外项与两个内项之间存在着一种关系,你能发现吗?

大家默默地观察着上面的几个比例,不一会儿,一些学生脸上露出惊喜的神色,按捺不住激动的心情,开始转身与周围的同学交流,教室里的气氛有点热闹起来。

这下,学生们又静了下来,认真地思考着老师的问题,许多学生在纸上写着比例进行着验证。

师:现在,请前后四人为组,将你发现的规律与同伴交流一下,看看大家是否同意?

学生在小组内进行着热烈的交流和讨论,并积极代表小组进行汇报。

生:我们发现了这样一个规律,比例中的两个外项的乘积与两个内项的乘积是相等的。我们还自己写了比例,发现这个规律是正确的。

教师将学生所举比例故意写成分数形式3/8=6/16,追问:哪两个是内项,哪两个是外项,让学生算出积并结合回答板书:

师:老师也写了一个比例(板书:3∶2=5∶4),怎么两个外项的积不等于两个内项的积!你们发现的规律可能是有问题的。

教师的这一问,还真把一部分学生给吓着了。不过,大家很快发现老师把比例写错了。

生:(机灵地)老师,你举的例子从反面证明了我们发现的规律是正确的。因为3∶2和5∶4这两个比是不能组成比例的。只有在比例中,两个外项的积等于两个内项的积。

师:很有道理!同学们很会观察,很会猜想,很会验证,自己发现了比例的基本性质。

板书:在比例中,两个外项的积等于两个内项的积。这叫做比例的基本性质。

有学生回答“因为3与8两个内项的积不等于6与5两个外项的积,所以,这两个比不能组成比例。教师对此引导学生展开严密的思考,假如6:3和8:5是能够组成比例的,则两个外项的积必定等于两个内项的积,而现在3与8的积不等于6与5的积,所以,假设是错的,也就是6∶3和8∶5这两个比是不能够组成比例的。

对于这一反例的判断,教师没有简单地让学生就事论事,而是不断地让学生就事论理,在说理的过程中不断地加深对比例性质的理解,同时进行较为严格的逻辑思维训练,培养学生的语言表达能力。

师:如果让你根据“2×9=3×6”写出比例,你行吗?你能写出多少个呢?

问题一提出,学生就积极地尝试着写比例,不一会儿,学生争着要在投影上展示自己所写的比例。有趣的是,学生将数字移来移去,有的比例重复出现,有的比例则被遗漏,台下的学生不停地为台上的伙伴出主意,有些学生忍不住喊着“我来”,教室里气氛热烈……针对学生用尝试的方法出现重复或遗漏的现象,教师激发引导说:同学们学习的热情很高,但仅凭热情往往还不能有效地解决问题,象这样一个一个举例写出,难免会有重复或遗漏,怎样思考才能很快地一个不漏地写出?根据比例的基本性质,若把2放在内项的位置上,那么,9应该放在什么位置上?把2和9同时放在内项位置上,共能写出几个比例?2和9只有同时放在内项的位置上吗?学生受到启发,写出了所有的比例。在学生经历这样一番尝试实践的基础上,教师引导学生反思体验:用尝试的方法去一个一个地写,还是从比例的基本性质出发进行有序思考,你们觉得哪种方法能更有效地解决问题?学生自然体会到后者更好,并表示会这样思考问题了。

师:你能用“3、4、5、8”这四个数组成比例吗?若能,请把组成的比例写出来。

基本性质出发进行思考作出判断给予充分肯定。

师:你能从3、4、5、8中换掉一个数,使之能组成比例吗?

许多学生凭籍直觉很快把“5”换成“6”,教师在给学生肯定后继续追问:若要换下其中的任意一个数,你行吗?这一问题将学生的思维引向深入。经过独立思考、集体讨论,大家将要换上的数用字母x表示,由比例的基本性质建立多个不同的方程,求出各方程的解,有效地解决了问题。

师:同学们真行!不仅探索发现了比例的基本性质,还能自觉地运用比例的基本性质,去判断两个比能否组成比例,去求比例中的未知项。

{}

教育工作者比例的基本性质教学设计【第五篇】

教学目标:

2、培养学生自主参与的意识和主动探索精神;培养学生观察、分析、推理和概括的能力。

重点难点:

难点:探索比例的基本性质和应用意义,判断两个比能否组成比例。

教学过程:

1、什么是比?比各部分的名称是什么?

2、求出下面每个比的比值。﹕163/4﹕1/8/。

1、创设情境,激发兴趣。1)看课文情境图。

5)操场上国旗长与宽的比值是多少?与这面国旗有什么关系?

2、动手计算、探究比例的意义。通过计算引出什么是比例?

3、组织看书,认识名称。

4、利用新知,学以致用。还能找出哪些比来组成比例?归纳总结:

探究新知,充分验证,确定性质。

你能发现比例的内项与外项之间有什么关系吗?小组交流汇报。

1)课本做一做。

2)练习6的题。

1)今天我们学习了什么?

2)你能比较“比”和“比例”有什么联系和区别吗?

教材36页练习6的题。

教育工作者比例的基本性质教学设计【第六篇】

青岛版《义务教育课程标准实验教科书·数学》五年制五年级下册第66—67页。

1、理解比例的意义,认识比例各部分名称;能利用观察—猜想—验证的方法得出比例的基本性质。

3、使学生在自主探究、合作交流的活动中,进一步体验数学学习的乐趣。

1、谈话。

师:同学们,上学期我们学过有关比的知识,谁能说说学过比的哪些知识?

生1:比的意义。

生2:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

生3:比的前项除以后项,所得的商就是比值。

……。

(评析:简短的几句谈话,引起了学生对已有知识的回忆,让学生“温故”而“启新”。)。

师:今天我们继续学习有关比的知识。昨天大家预习了,谁来说说今天学习什么?

生:比例?(书:课题比例)。

师:看到这个课题你想知道什么?

(预设:1、什么叫比例?2、比例各部分名称?3、比例的基本性质?4、比和比例有什么区别?)。

生:什么叫比例呢?

生:(书)表示两个比相等的式子叫做比例。

师:你怎样理解这句话的意思?可以举例说明。(如果学生举不出例子,我就从比例的意义上去引导,表示两个比相等,你能写出两个比吗?怎样知道这两个比是否相等呢?指着学生举的例子说,像这样的两个比相等的式子就是比例)。

(老师巡视时可以提示学生有的孩子写出了小数、分数形式的比例很好。生汇报)师板书。

师:通过以上练习,你认为这句话中哪些词最重要?为什么?

生1:两个比,不是一个比。

生2:相等,这个比必须相等。

生3:式子,不是两个等式是式子。

师:(投影出示)请你利用比例的意义,判断下面的比能否组成比例?

(1)0、8:0、3和40:15。

(2)2/5:1/5和0、8:0、4。

(3)8:2和15/2:15。

(4)3/18和4/24。

(学生独立判断,师巡视指导,然后汇报)。

师:先说能否组成比例,再说明理由,

生:0、8:0、3和40:15能组成比例,因为0、8:0、3和40:15的比值都是8/3,所以0、8:0、3和40:15能组成比例。

同理教学:(2)2/5:1/5和0、8:0、4。

(3)8:2和15/2:15不能组成比例,因为8:2和15/2:15的比值不相等,所以8:2和15/2:15不能组成比例。

师:怎样改能使它组成比例呢?

生:4:8=15/2:15或8:2=15:15/4。

同理教学(4)3/18和4/24。

师:像3/18和4/24是比例吗?

2、认识比例各部分的名称。

生:组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。(师板书)。

师:请你指出在这个比例中(16:2=32:4),哪是它的内项?哪是它的外项?

生:2和32是它的内项,16和4是它的外项。

师:请同学们快速抢答老师指的数是比例的外向还是内项。

生:(激烈抢答):外项、、、、、、

师:同学们反应真快,分数的形式中哪些是比例的项呢?

生:2和32是内项,16和4是外项。

师:老师指分数比例学生抢答。

师:同学们学得真不错,敢不敢和老师来个比赛?

生:(兴趣高涨):敢!

师:好,请两位同学们各说一个比,我们共同来判断能否组成比例,看谁判断的快?

师:谁来。

生1:4:5,生2:8:9不能组成比例。

生:对。

师:服气吗?不服气咱们再来一次,

生1:1、2:1、8,生2:3:5。

师:不能。对吗?

生:对。

师:老师又赢了,这回服气了吧。(学生点头)。

生:想。

师:其实秘密就藏在比例的两个内项和两个外项之中,就请你以16:2和32:4为例,研究一下,试试能不能发现这个秘密!老师给你们两个温馨提示:(课件出示:温馨提示:

1、可以通过观察、算一算的方法进行研究。

2、你能得出什么结论?)。

师:现在请将你的发现在小组里交流一下,看看大家是否同意。

(学生讨论)。

师:哪个小组愿意将你们的发现与大家分享?

生1:我们组发现16和32是倍数关系,2和4也是倍数关系,所以我们想,在比例里,一个外项和一个内项之间都存在倍数关系。

师:有道理,不错,还有其他发现吗?

生2:我们组发现16×4=6432×2=64,也就是两个外项的.积等于两个内项的积。

师:你能把这个计算过程写在黑板上吗?(学生板书:16×4=64)。

师:这是两个外项的积,(师板书:两个外项的积)。

(学生板书:16×4=64)。

师:这是两个内项的积,(师板书:两个内项的积)。

师:你的意思是:两个外项的积等于两个内项的积(师板书:=)是吗?

师:其他组的同学同意他们这个结论吗?

生:同意。

(以上环节,灵活掌握,如果有的学生能直接用比例的基本性质判断,就直接问:你怎么算得那么快?生:我用两个外项的积=两个内项的积,判断它们能组成比例。是不是所有的比例两个外项的积=两个内项的积呢?怎么验证?)。

师:真的所有的比例都是这样吗?怎么验证?

生:可以多举几个例子看看。

师:这是个好建议,那快点行动吧。(学生独立验证)。

师:有没有同学举得例子不符合这个结论呢?那也就是说,所有的比例都是两个外项的积等于两个内项的积。其实这也正是比例的基本性质。同学们太厉害了。能通过举例来验证自己的发现。

师:我们以前学习的比,和今天学习的比例有什么不同呢?请六人小组说一说。(师巡视)。

师:哪一组的代表来说一说。

生:比和比例的意义不同?两个数相除又叫做两个数的比。表示两个比相等的式子叫做比例。

生:比和比例形式不同。比是一个比,比例是两个比。

生:性质不同。比的前项和后项同时乘以或除以同一个数(0除外)比值不变。在比例里,两外项的积等于两内项的积。

5、总结:今天学习了什么?学生看着板书说,请同学们默记两遍。

1、下面每组比能组成比例吗?

(1)6:3和8:5(2)20:5和1:4。

(3)3/4:1/8和18:3(4)18:12和30:20。

生1:第(1)个不能组成比例,因为6×5=30,3×8=24,不相等。

生2:第(2)个不能组成比例,因为20×4=100,5×1=5,不相等。

师:怎样改一下使它们能组成比例?

生3:把20:5改成5:20,这样5×4=20,20×1=20,能组成比例。

生4:还可以把1:4改成4:1,也能组成比例。

生5:第(3)个可以组成比例,因为3/4×3=1/8×18。

生6:第(4)个可以组成比例,因为18×20=360,12×30=360。

师:看来要判断两个比能否组成比例,除了可以根据两个比的比值是否相等外,还可以根据比例的基本性质来进行判断。

2、填一填。

2:1=4:()1、4:2=():3。

3/5:1/2=6:()5:()=():6。

师:最后一题还有没有别的填法?

生1:5:(1)=(30):6。

生2:5:(30)=(1):6。

生3:5:(2)=(15):6。

生4:5:(15)=(2):6。

师:怎么会有这么多种不同的填法?

生:两个外项的积是30,根据比例的基本性质,只要两个内项的积也是30就可以了。

3、用2、8、5、20四个数组成比例。

师:你能用这四个数组成比例吗?

师:最多可以写出几种?怎样写能够做到既不重复也不遗漏?

生:2和20做外项,8和5做内项时有4种:

2:8=5:202:5=8:20。

20:8=5:220:5=8:2。

8和5做外项,2和20做内项时也有4种:

8:2=20:58:20=2:5。

5:2=20:85:20=2:8。

师:说一说,这节课你有哪些收获?

生3:我知道了要判断两个比能否组成比例可以根据意义判断,也可以根据比例的基本性质判断。

师:这节课哪个地方给你留下的印象最深刻?

教育工作者比例的基本性质教学设计【第七篇】

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

一、旧知铺垫。

1.什么叫做比例?

2.应用比例的意义,判断下面的比能否组成比例。

2.4:1.6和60:40。

二、探索新知。

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2.4:1.6=60:40。

内项。

外项。

(2)学生认一认,说一说比例中的外项和内项。

如::=:

外内内外。

项项项项。

你能发现比例的外项和内项有什么关系吗?

(1)学生独立探索其中的规律。

(2)与同学交流你的发现。

(3)汇报你的发现,全班交流。

板书:两个外项的积是2.4×40=96。

两个内项的积是1.6×60=96。

外项的积等于内项的积。

(4)举例说明,检验发现。

如::0.5=1.2:。

两个外项的积是×=0.6。

两个内项的积是0.5×1.2=0.6。

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:=。

2.4×40=1.6×60。

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5)归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

3.填一填。

(1)=。

转载自

()×()=()×()。

(2)0.8:1.2=4:6。

()×()=()×()。

(3)4×5=2×10。

4:()=():()。

=

4.做一做。

完成课文中的“做一做”。

5.课堂小结。

(2)你可以用什么方法来判断两个比能否组成比例?

三、作业。

完成课文练习六第4~6题。

课后记:

教育工作者比例的基本性质教学设计【第八篇】

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

1.什么叫做比例?

2.应用比例的意义,判断下面的比能否组成比例。

:和60:40。

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如::=60:40。

内项。

外项。

(2)学生认一认,说一说比例中的外项和内项。

如::=:

外内内外。

项项项项。

你能发现比例的外项和内项有什么关系吗?

(1)学生独立探索其中的规律。

(2)与同学交流你的发现。

(3)汇报你的发现,全班交流。

板书:两个外项的积是×40=96。

两个内项的积是×60=96。

外项的积等于内项的积。

(4)举例说明,检验发现。

如::=:。

两个外项的积是×=。

两个内项的积是×=。

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:=。

×40=×60。

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5)归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

3.填一填。

(1)=。

转载自

()×()=()×()。

(2):=4:6。

()×()=()×()。

(3)4×5=2×10。

4:()=():()。

=

4.做一做。

完成课文中的“做一做”。

5.课堂小结。

(2)你可以用什么方法来判断两个比能否组成比例?

完成课文练习六第4~6题。

相关推荐

热门文档

22 2385732