首页 > 学习资料 > 教学设计 >

反比例教学设计8篇

网友发表时间 2864126

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“反比例教学设计8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

反比例教学设计【第一篇】

教学目的:

进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能正确运用。

教学过程:

一、复习。

判断下面两种理成不成比例,成什么比例,为什么?

(1)单价一定,数量和总价。

(2)路程一定,速度和时间。

(3)正方形的边长和它的面积。

(4)工作时间一定,工作效率和工作总量。

二、新授。

1、揭示课题。

2、学习例7。

(1)认识:“千米/时”的读法意义。

(2)出示书中的问题要求学生逐一回答。

(3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的关系式?

(4)填空:用下面的形式分别表示两个表的内容。

当()一定时,()和()成()比例关系。

还有什么样的依存关系?

(5)教师作评讲并小结。

(6)用图表示例7中的两种量的关系。

指导学生描点、连线。

在这条直线上,当时间的值扩大时,路程的对应值是怎样变化的?时间的值缩小呢?

用同样的方法观察右表。

3、总结正、反比例的特点(异同点)。

由学生比、说。

三、巩固练习。

1、练一练第1、2题。

2、p49第1题。

四、课堂小结:

正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?

五、作业。

p49第2题(1)(4)(5)(6)(9)。

六、课后作业。

1、p49第2题(2)(3)(7)(8)(10)。

2、收集生活中正、反比例关系的量并分析。

反比例教学设计【第二篇】

教学目的:

1.通过检测讲评,进一步理解和掌握正、反比例应用题的解题规律。

2.通过一题多变、一题多解等题组练习形式,由浅入深,由易到难,培养学生思维的灵活性。

我们已经学过了正、反比例应用题,今天我们上一节检测讲评课课。(板书课题:正反比例应用题)通过这节课的学习,希望进一步理解和掌握正反比例应用题的解题规律。

检测题。

1.什么叫成正比例的量?它的关系式是什么?

2.什么叫成反比例的量?它的关系式是什么?

3.判断下面两种量成不成比例?成什么比例?

a.订阅《中国少年报》的份数和钱数。

b.日产量一定,天数和总产量。

c.路程一定,速度和时间。

d.圆的周长和半径。

e.长方形的周长一定,长和宽。

f.圆锥的体积一定,底面积和高。

大家对概念掌握得较熟练,但在应用中可看出对概念的理解程度还是有差距的。两种量是不是成正反比例的量先明确是谁和谁,其次看它们是不是相互影响,若是,就看着两种量是不是属于积商关系,积商一定时,就下断论。例如人的身高和体重是不是成正反比例的量,这两种量一种量变化,另一种量不一定发生变化,直接否定。再如,圆周率和圆周长是不是成正反比例的量,因为圆周长变化时圆周率并不发生变化,也是直接否定。a、b、c、d、f中两种量相互影响,且积或商一定所以成正反比例的量,e中两种量相互影响,但不实际上已定,故不成正反比例的'量。大家一定要把握概念的实质,灵活运用。

二、练一练。

1.计算下列各题:

农具厂生产一批农具,3天生产360台,照这样计算,30天可生产多少台?(指名读题)。

师:这道题用比例方法来解答请同学们自己做一做。(一人板演)。

订正时请板演的同学先讲一讲,做题的时候自己是怎么想的?并板书列式:360/3=x/30。

师:这道题,你们觉得他做得咋样?如果工作时间30天不直接告诉我们,还可以怎么说?

生:如果再生产27天,一共可生产多少台?

师:同原题比较,这道题复杂在哪呢?

生:原题的条件是直接的,这题的条件是间接的。

生:原题问题所对应的量是已知的,这题问题所对应的量是未知的。

师:这道题怎样解答呢?(要求学生口头列出比例式)。

生:解:设一共可生产x台,360/3=x/(3+27)(板书:360/3=x/(3+27))。

教师提问:3+27求的是什么?把3+27写成27可以吗?

教师强调:列式时一定要找准相关联的量中相对应的数。

师;这道题还可以怎样解答?

生:解:设27天可生产x台,360/3=x/27x+360。(板书:360/3=x/27x+360)。

教师小结:80%同学能做出地一题,第二问题就有点大了。其实象这道题,问题虽然变了,但题中基本数量关系未变,所以我们都是用正比例的方法来解答的。这道题我们可以直接设问题为x,列出这样的比例式(指360/3=x/(3+27))。也可以间接设27天的生产量为x,求出27天的生产量再加上前3天的生产量,就得到了一共的生产量。

解答正比例应用题的关键一是要正确判断相关联的两种量是否成正比例,二是要找准相关联的量中相对应的数。

师:这道题用比例方法来解答请同学们自己做一做。(一人板演)。

教师订正时请同学讲述解题思路,并板书方程:100x=80*20。

将原题变成:

以上4题要求学生独立完成。

教师评讲:通过刚才的变换我们发现,较复杂的反比例应用题,其复杂性表现在两个方面。一是已知条件发生变化,引起未知数x对应值的复杂化。二是问题发生变化,引起未知数x的复杂化。但不管怎样,我们要紧扣反比例的意义,对应用题中两相关联的量进行正确的判断。

等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。

反比例教学设计【第三篇】

教学目标:

知识与技能:1.结合丰富的实例,认识反比例。2.能根据反比例的意义,判断两个相关联的量是不是反比例。

过程与方法:通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。

情感态度价值观:培养学生自主、合作学习、探索新知的能力,激发学习数学的热情。感受反比例关系在生活中的广泛应用。初步渗透函数思想。

教学重点:认识反比例,根据反比例意义判断两个相关联的量是否成。

反比例。

教学难点:认识反比例,根据反比例意义判断两个相关联的量是否成。

反比例。

教具准备:电脑课件。

教学过程:

一、复习引入。

1、计算。

2、判断下面各题中的两种量是否成正比例?为什么?

(1)文具盒的单价一定,买文具盒的个数和总价。

(2)一堆货物一定,运走的量和剩下的量。

(3)汽车行驶的速度一定,行驶的路程和时间。

3、说说什么是正比例。

师:大家对正比例知识理解掌握得非常好,接下来我们就该学习什么了?

二、出示学习目标。

1.能根据反比例的意义,判断两个相关联的量是不是反比例。2通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。

3培养学生探索研究的能力,感受反比例关系在生活中的广泛应用。

三、指导自学。

师:给你们讲个小故事:

聪明!嘿嘿??

过了几天,财主到了裁缝店取帽子,结果一看,顿时傻了眼:10顶的帽子小得只能戴在手指头上了!

学习提示:

一独立思考?

1、“为什么同一匹布,裁缝说做1顶帽子,2顶帽子,10顶都可以呢?”

二合作学习。

小组讨论上述的问题。

三看书合作学习。

1、把25页例2、例3的表格补充完整。

4、你知道什么是反比例吗?

四、学生自学。

五、检查自学效果。

让学生说说自学要求中的内容。

师归纳:两种相关联的量,一种量随着另一种量的变化而变化,

在变化过程中两种量的积一定,那么这两种量成反比例。

六、引导更正,指导运用。

你们还找出类似这样关系的'量来吗?”

排队做操,总人数不变,排队的行数和每行的人数是反比例;长方体的体积一定,底面积和高是反比例。

七、当堂训练。

基础练习。

1、填空。

两种_____的量,一种量随着另一种量变化,如果这两种量中相对应的两个数的______,这两种量叫做成反比例的量,它们的关系叫做_______关系。

2、判断下面每题中的两种量是不是成反比例,并说明理由。

(1)煤的总量一定,每天的烧煤量和能够烧的天数。

(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。

(3)生产电视机的总台数一定,每天生产的台数和所用的天数。

(4)圆柱体的体积一定,底面积和高。

(5)小林做10道数学题,已做的题和没有做的题。

(6)长方形的长一定,面积和宽。

(7)平行四边形面积一定,底和高。

提高练习。

宽/cm1。

四、小结。

通过这节课的学习,你有什么收获?

这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。

相关联,一个量变化,另一个量也随着变化积一定。

xy=k(一定)。

反比例教学设计【第四篇】

听了靳老师讲的这节解决问题的课,我感觉最大的亮点是给我们展示了一节环环相扣的课堂,能让学生在40分钟的课堂上学到更多的知识。

首先,在课堂设计上,以练习为主,在练习中提升知识的运用。教学中,靳老师从刚开始的温故互查环节,就有目的的引导学生总结解决问题的6个步骤,然后让学生以这6个步骤为解决问题的主要思路,从出示的例题,以至于后面的'练习题,都是围绕这一思路完成。每道题都分析了题目中哪两种量是相关联的?哪一种量是固定不变的?从哪里可以看出?它们成什么关系?学生以小组为单位围绕以下两个问题讨论,并尝试列示。解答完后提出还需要检验。通过例题的教学引导学生熟练运用解题步骤:整个教学环节都贯穿在这一环境中,这种联系实际的方式,学生倍感亲切,兴趣盎然;同时能体会到数学在实际生活中的应用价值。

其次,靳老师紧紧围绕教研主题主题“重点导学、疑点导练”,教学目标明确,在导学时言简意赅。例如:每一道题目中“哪两种量是相关联的量?哪一种量是固定不变的,从哪里可以看出?它们成什么关系?”这些问题作为引导学生分析问题的关键去共同交流,然后让学生在练习中发现问题,在疑惑中解决问题,成就了高效的课堂。

最后,我觉得教师主导、学生主体作用发挥较好。课上自始至终让学生参与体验解决问题的过程,通过自主学习和互动交流,很快掌握了本节课知识。在教学中力求通过知识的迁移,结合学生的生活经验,在实际教学中,将课堂的主动权放手学生,让学生在自己探索、独立尝试、同桌交流、概括小结、拓展延伸中轻松,高效地完成了教学任务。

建议:

1、引导学生说出检验的方法。

2、有些题可以适当的计算一下。

反比例教学设计【第五篇】

2.通过观察、比较、归纳,提高学生综合概括推理的能力.。

3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.。

教学重点。

教学难点。

教学过程。

一、导入新课。

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

(二)教师提问。

1.你为什么马上能想到还剩多少呢?

2.是不是因为吃了的和剩下的是两种相关联的量?

教师板书:两种相关联的量。

(三)教师谈话。

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和。

数量也是两种相关联的量.你还能举出一些例子吗?

二、新授教学。

(一)成正比例的量。

例1.一列火车行驶的时间和所行的路程如下表:

时间(时)。

1

2

3

4

5

6

7

8

……。

路程(千米)。

90。

180。

270。

360。

450。

540。

630。

720。

……。

1.写出路程和时间的比并计算比值.。

(1)。

(2)2表示什么?180呢?比值呢?

(3)这个比值表示什么意义?

(4)360比5可以吗?为什么?

……。

2.思考。

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

教师板书:时间、路程、速度。

(3)速度是怎样得到的?

教师板书:

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.。

3.小结:有什么规律?

教师板书:商不变。

1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.。

工效(个)。

10。

20。

30。

40。

50。

60。

……时间(时)。

60。

30。

20。

15。

12。

10。

……。

2.教师提问。

(1)计算工效和时间的乘积.。

(2)这一组题中涉及了几种量?谁与谁是相关联的量?

(3)请你举例说明谁与谁是相对应的两个数?

(4)在这一组题中两种相关联的量是如何变化的?(举例说明)。

3.小结:有什么规律?(板书:积不变)。

(三)不成比例的量。

1.出示表格。

运走的吨数。

10。

20。

30。

40。

剩下的吨数。

90。

80。

70。

60。

总吨数(和不变)。

100。

100。

100。

100。

2.教师提问。

(1)总吨数是怎样得到的?

(2)谁与谁是两种相关联的量?

(3)它们又是怎样变化的?变化的`规律是什么?

运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变。

(四)结合三组题观察、讨论、总结变化规律.。

讨论题:

1.这三组题每组题中谁与谁是两种相关联的量?

2.在变化过程中,它们的异同点是什么?

共同点:都有两种相关联的量,一种量变化,另一量也随着变化。

不同点:第一组商不变,第二组积不变,第三组和不变.。

总结:

4.强调第三组题中两种相关联的量叫做不成比例。

5.教师提问。

(1)两种量成正比例必须具备什么条件?

(2)两种量成反比例必须具备什么条件?

(五)字母关系式。

三、巩固练习。

判断下面各题是否成比例?成什么比例?

1.一种圆珠笔。

总价(元)。

6

支数。

1

2

3

4

5

6

单价(元)。

1

2

4

5

10。

支数。

100。

50。

25。

20。

10。

(1)表中有哪两种相关联的量?

(2)说出几组这两种量中相对应的两个数的比。

(3)每组等式说明了什么?

(4)两种相关的量是否成比例?成什么比例?

2.当速度一定,时间路程成什么比例?

当时间一定,路程和速度成什么比例?

当路程一定,速度和时间成什么比例?

3.长方形的面一定,长和宽。

4.修一条路,已修的米数和剩下的米数.。

四、课堂总结。

五、课后作业。

(一)判断下面每题中的两种量是不是成正比例,并说明理由.。

1.苹果的单价一定,购买苹果的数量和总价.。

2.轮船行驶的速度一定,行驶的路程和时间.。

3.每小时织布米数一定,织布总米数和时间.。

4.长方形的宽一定,它的面积和长.。

(二)判断下面每题中的两种量是不是成反比例,并说明理由.。

1.煤的总量一定,每天的烧煤量和能够烧的天数.。

2.种子的总量一定,每公顷的播种量和播种的公顷数.。

3.李叔叔从家到工厂,骑自行车的速度和所需时间.。

4.华容做12道数学题,做完的题和没有做的题.。

反比例教学设计【第六篇】

教学目标:

1.通过观察、分析、对比等活动,理解成反比例的量,并能找出生活中成反比例的量的实例。

2.揭示知识间的联系,培养学生分析、比较、判断和推理及处理纷繁复杂信息的能力。

3.进一步培养自主学习,合作交流,探索研究的意识和能力,激发学习数学的热情。教学重点:

认真分析两种量的变化情况及规律。教具:

教学课件教学过程:一.复习导入。

1.什么是成正比例的量?

2.判断两个量是否成正比例必须满足哪些条件?

3.判断下面表格中的两个量是否成正比例,并说明理由。课件出示。

表一。

高度/厘米24681012。

体积/立方厘米50100150200250300表二。

高度/厘米302015105。

底面积/平方厘米1015203060。

学生独立思考,指名汇报。

1.研究表2中高度与底面积的变化规律。

师:表2中的数据是通过这样一个实验得到的。课件出示课本第42页例3中学生实验的画面。

请同学们口算验证一下,这些杯子里水的体积是相同吗?学生口算验证并填表。

2.水的高度是怎样随着底面积变化的?

3.水的高度和底面积的变化有什么规律?学生小组讨论并汇报讨论结果。

请同学们结合上例小结:什么是成反比例的量?

学生试概括,师引导学生准确表述并板书反比例的意义。思考:怎样依据反比例的意义判断两种量是否成反比例?3.用字母表示反比例关系。如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以表示为()。4.反比例关系图像。学习了正比例关系,我们认识了正比例关系的图像,知道正比例关系的图像是一条经过原点的直线,反比例关系的图像是怎样的,让我们一起看看刚才例3中的反比例关系图像。

1.出示课本第43页的做一做。指名读题,理解题意。

学生先独立思考,再指名汇报。2.填空。(1)两种()的量,一种量变化,另一种量也随着变化,如果这两种量中()的两个数的()一定,这两种量就叫做(),他们的关系叫做反比例关系。(2)如果用字母x和y表示两种相关联的量,用k表示它们的积(一定),反比例的关系式可以表示为()。

3.判断下面题中的两个量是否成反比例,并说明理由。(1)路程一定,速度和时间。

(2)书的总册数一定,每包的册数和包数。(3)在一块菜地上种的黄瓜和西红柿的面积。4.判断。

1.被除数一定,除数和商成反比例。()=10,所以2和5成反比例。()。

3.铺地面积一定时,方砖面积和所需块数成反比例。()4.班级学生的总人数一定,出勤率与缺勤率成反比例。()四.拓展应用。

你能举一个生活中成反比例的量的例子吗?

五、课堂小结。

通过本节课的学习你有什么新的收获?板书设计:

两种相关联的量。

成反比例的量一种量变化,另一种量也随着变化。

如果这两种量中相对应的两个数的积一定。

这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

反比例教学设计【第七篇】

1.知识与技能。

理解反比例函数的意义;根据已知条件确定反比例函数的解析式。

2.过程与方法。

学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际问题;发展学生的抽象思维能力,提高数学化意识。

3.情感态度与价值观。

经历反比例函数的形成过程,体会数学学习的重要性,提高学生学习数学的兴趣;在学习过程中进行分组讨论,培养学生的合作交流意识和探索精神,体验学习的快乐与成就感。

教学重点。

理解反比例函数的意义;根据已知条件确定反比例函数的解析式。

教学难点。

反比例函数解析式的确定。

教学过程。

一、创设情境,导入新课。

问题1:(课件展示)。

问题2:(课件展示)。

问题3:(课件展示)。

下列问题中,变量间的`对应关系可用怎样的函数关系式表示?

(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化。

(2)某住宅小区要种植一个面积为1000o的矩形草坪,草坪的长y(单位m)随宽x(单位m)的变化而变化。

(3)已知某市的总面积为×10平方千米,人均占有的土地面积s(单位:平方千米/人)会随全市人口n(单位:人)的变化而变化。

二、观察思考,明晰概念。

1.这些关系式都体现了函数关系,它们是我们曾学习过的正比例函数或一次函数吗?

2.这些函数关系式与正比例函数、一次函数有何不同?

3.这些函数关系式有什么共同的特征?

4.各关系式中两变量之间有什么关系?

5.你能归纳出反比例函数的概念吗?

通过回答以上问题,师生共同总结反比例函数的概念。

三、小组讨论,领悟概念。

1.反比例函数关系式中有几个变量?

2.变量之间存在什么关系?

3.反比例函数还有其他形式吗?若有请指出。

4.反比例函数中,变量x、y和常数k有什么具体要求?为什么?

四、内化新知,拓展应用。

1.下列函数中哪些是反比例函数?请指出反比例函数中的k值。

2.已知y是x的反比例函数,且当x=2时,y=6。

(1)写出y与x的函数关系式。

(2)求当x=4时,y的值。

3.当x为何值时函数y=x-2a-4是反比例函数?

4.已知函数y=y1+y2,与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5。

(1)求y与x的函数关系式。

(2)当x=-2时,求函数y的值。

五、课堂练习。

师生共同完成教课书第40页的练习题。

六、课堂小结。

1.通过本节课的学习你对反比例函数有怎样的认识?

2.反比例函数与正比例函数的区别有哪些?

七、作业布置。

教材中本节习题第1、2、4题。

(责任编辑赵永玲)。

反比例教学设计【第八篇】

反比例关系和正比例关系一样,是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的正、反比例方面的实际问题。我就这节课的收获、感悟,简要谈谈:

在教学反比例的意义时,我首先是联系旧知、渗透难点。因为反比例的意义这一部分的内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,提出自主学习“要求”,让学生主动、自觉地去观察、分析、概括、发现规律。对于学生来说,数量关系并不陌生,在以前的应用题学习中是反复强调过的,因此,学生观察、分析、概括起来是较为轻松的。当学完例1时,我并没有急于让学生概括出反比例的意义,而是让学生按照学习例1的方法学习试一试,接着对例1和试一试进行比较,得出它们的相同点,在此基础上来揭示反比例的意义,就显得水道渠成了。然后,再通过说一说,让学生对两种相关联的量进行判断,以加深学生对反比例意义的理解。最后,通过学生对正反比例意义的对比,加强了知识的内在联系,通过区别不同的概念,巩固了知识。通过这节课的教学,我深深地体会到:要上好一节数学课很难,要上好每一节数学课就更难,原因多多……这节课课前我虽做了充分的准备,但还是存在一些问题。比如练习题安排难易不到位。由于学生刚接触反比例的意义,应多练习学生接触较多的题目,使学生的基础得到巩固,不能让难题把学生刚建立起的知识结构冲跨。

相关推荐

热门文档

22 2864126