首页 > 学习资料 > 教案大全 >

初中数学分式教案通用4篇

网友发表时间 85512

发表时间

【导言】此例“初中数学分式教案通用4篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

初中数学分式教案【第一篇】

分式(2课时)

上课时间 年 月 日星期

一、复习要点

1、分式的通分和约分

2、分式的定义域

3、分式的化简和求值

二、复习过程

1、求代数式的值:①化 ②代 ③算

例:①已知x+y=5;xy=3,求x3y+2x2y2+xy3

②已知a=-1,b=-3,c=1,求 a2b--3abc

③已知a= 求 ÷( - )+

④已知x= y= ,求 +

2、分式的通分和约分

(1)通分最简公分母:小;高

(2)约分:注: 与 和

3、分式的定义域

①分式 (1)何时有意义(2)何时无意义(3)何时值为0

4、分式的。化简和求值

①1- ÷ +

其他例题见复习用书13页5(6、7、8、)6

三、小结 1、分式的通分和约分

2、分式的定义域

3、分式的化简和求值

四、练习:略

五、作业:

见复习用书

分式(2课时)

上课时间 年 月 日星期

一、复习要点

1、分式的通分和约分

2、分式的定义域

3、分式的化简和求值

二、复习过程

1、求代数式的值:①化 ②代 ③算

例:①已知x+y=5;xy=3,求x3y+2x2y2+xy3

②已知a=-1,b=-3,c=1,求 a2b--3abc

③已知a= 求 ÷( - )+

④已知x= y= ,求 +

2、分式的通分和约分

(1)通分最简公分母:小;高

(2)约分:注: 与 和

3、分式的定义域

①分式 (1)何时有意义(2)何时无意义(3)何时值为0

4、分式的化简和求值

①1- ÷ +

其他例题见复习用书13页5(6、7、8、)6

三、小结 1、分式的通分和约分

2、分式的定义域

3、分式的化简和求值

四、练习:略

五、作业:

见复习用书

初中数学分式教案【第二篇】

第一课时

一、教学过程

复习提问

1.分式的基本性质?

2.分式的变号法则?

新课

数学小笑话:(配上漫画插图幻灯片)

从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”

问:这个富家子弟为什么会犯这样的错误?

分数约分的方法及依据是什么?

1.提出课题:分式可不可以约分?根据什么?怎样约分?约到何时为止?

学生分组讨论,最终达成共识.

2.教师小结:

(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.

(2)分式约分的依据:分式的基本性质.

(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.

(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.

3.例题与练习:

例1约分:

(1);

请学生观察思考:①有没有公因式?②公因式是什么?

解:.

小结:①分式的分子、分母都是几个因式的积的。形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.

(2);

请学生分析如何约分.

解:.

小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②注意对分子、分母符号的处理.

(3);

解:原式.

(4);

解:原式

(5);

解:原式.

例2?化简求值:

.其中,.

分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算提供了便利条件.

解:原式.

当,时.

二、随堂练习

教材P65练习1、2.

三、总结、扩展

1.约分的依据是分式的基本性质.

2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.

3.若分式的分子、分母中有多项式,则要先分解因式,再约分.

四、布置作业

教材P73中2、3.

分式的基本性质【第三篇】

第一课时

(一)教学过程 

复习提问

1.分式的定义?

2.分数的基本性质?有什么用途?

新课

1.类比分数的基本性质,由学生小结出分式的基本性质:

分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即:

(其中是不等于零的整式。)

2.加深对分式基本性质的理解:

例1  下列等式的右边是怎样从左边得到的?

(1);

由学生口述分析,并反问:为什么?

解:∵

∴.

(2);

学生口答,教师设疑:为什么题目未给的条件?(引导学生学会分析题目中的隐含条件。)

解:∵

∴.

(3)

学生口答。

解:∵,

∴.

例2  填空:

(1);

(2);

(3);

(4).

把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据。

例3  不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。

(1);

分析学生讨论:①怎样才能不改变公式的值?②怎样把分子分母中各项系数都化为整数?

解:.

(2).

解:.

例4  判断取何值时,等式成立?

学生分组讨论后得出结果:

∴.

(二)随堂练习

1.当为何值时,与的值相等

2.若分式有意义,则,满足条件为( )

以上答案都不对

3.下列各式不正确的是( )

4.若把分式的和都扩大两倍,则分式的值

A.扩大两倍 B.不变

C.缩小两倍 D.缩小四倍

(三)总结、扩展

1.分式的基本性质。

2.性质中的可代表任何非零整式。

3.注意挖掘题目中的隐含条件。

4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数学化繁为简的策略,并为分式作进一步处理提供了便利条件。

(四)布置作业

教材P61中2、3;P62中B组的1

(五)板书设计 

分式的基本性质【第四篇】

第一课时

(一)教学过程

复习提问

1.分式的定义?

2.分数的基本性质?有什么用途?

新课

1.类比分数的基本性质,由学生小结出:

分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即:

(其中是不等于零的整式。)

2.加深对分式基本性质的理解:

例1  下列等式的右边是怎样从左边得到的?

(1);

由学生口述分析,并反问:为什么?

解:∵

∴.

(2);

学生口答,教师设疑:为什么题目未给的条件?(引导学生学会分析题目中的隐含条件。)

解:∵

∴.

(3)

学生口答。

解:∵,

∴.

例2  填空:

(1);

(2);

(3);

(4).

把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据。

例3  不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。

(1);

分析学生讨论:①怎样才能不改变公式的值?②怎样把分子分母中各项系数都化为整数?

解:.

(2).

解:.

例4  判断取何值时,等式成立?

学生分组讨论后得出结果:

∴.

(二)随堂练习

1.当为何值时,与的值相等

2.若分式有意义,则,满足条件为( )

以上答案都不对

3.下列各式不正确的是( )

4.若把分式的和都扩大两倍,则分式的值

A.扩大两倍 B.不变

C.缩小两倍 D.缩小四倍

(三)总结、扩展

1..

2.性质中的可代表任何非零整式。

3.注意挖掘题目中的隐含条件。

4.利用将分式的分子、分母化成整系数形式,体现了数学化繁为简的策略,并为分式作进一步处理提供了便利条件。

(四)布置作业

教材P61中2、3;P62中B组的1

(五)板书设计

相关推荐

热门文档