首页 > 学习资料 > 初中教案 >

学校初二数学教案优推5篇

网友发表时间 2807228

【阅读指引】阿拉题库网友为您分享整理的“学校初二数学教案优推5篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

数学初二教案【第一篇】

考标要求:

1体会因式分解法适用于解一边为0,另一边可分解为两个一次因式的乘积的一元二次方程;

2会用因式分解法解某些一元二次方程。

重点:用因式分解法解一元二次方程。

难点:用因式分解把一元二次方程化为左边是两个一次二项式相乘右边是零的形式。

一填空题(每小题5分,共25分)

1解方程(2+x)(x-3)=0,就相当于解方程()

A2+x=0,Bx-3=0C2+x=0且x-3=0,D2+x=0或x-3=0

2用因式分解法解一元二次方程的思路是降次,下面是甲、乙两位同学解方程的过程:

(1)解方程:,小明的解法是:解:两边同除以x得:x=2;

(2)解方程:(x-1)(x-2)=2,小亮的解法是:解:x-1=1,x-2=2或者x-1=2,x-2=1,或者,x-1=-1,x-2=-2,或者x-1=-2,x-2=-1∴=2,=4,=3,=0

其中正确的是()

A小明B小亮C都正确D都不正确

3下面方程不适合用因式分解法求解的是()

A2-32=0,B2(2x-3)-=0,,D

4方程2x(x-3)=5(x-3)的根是()

Ax=,Bx=3C=,=3Dx=

5定义一种运算“※”,其规则为:a※b=(a+1)(b+1),根据这个规则,方程x※(x+1)=0的解是()

Ax=0Bx=-1C=0,=-1,D=-1=-2

二填空题(每小题5分,共25分)

6方程(1+)-(1-)x=0解是=XXXXX,=XXXXXXXXXX

7当x=XXXXXXXXXX时,分式值为零。

8若代数式与代数式4(x-3)的值相等,则x=XXXXXXXXXXXXXXXXX

9已知方程(x-4)(x-9)=0的解是等腰三角形的两边长,则这个等腰三角形的周长=XXXXXXX.

10如果,则关于x的一元二次方程a+bx=0的`解是XXXXXXXXX

三解答题(每小题10分,共50分)

11解方程

(1)+2x+1=0(2)4-12x+9=0

(3)25=9(4)7x(2x-3)=4(3-2x)

12解方程=(a-2)(3a-4)

13已知k是关于x的方程4k-8x-k=0的一个根,求k的值。?

14解方程:-2+1=0

15对于向上抛的物体,在没有空气阻力的情况下,有如下关系:h=vt-g,其中h是上升到高度,v是初速度,g是重力加速度,(为方便起见,本题中g取10米/),t是抛出后所经过的时间。

如果将一物体以每秒25米的初速向上抛,物体多少秒后落到地面

初二数学教案【第二篇】

重难点分析

本节的重点是矩形的性质和判定定理。矩形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是有一个角是直角,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。矩形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

本节的难点是矩形性质的灵活应用。由于矩形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是矩形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。

教法建议

根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:

1、矩形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。

2、矩形在现实中的实例较多,在讲解矩形的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识。

3、 如果条件允许,教师在讲授这节内容前,可指导学生按照教材145页图4-30所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些。

4、 在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳。

5、 由于矩形的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明。

6、在矩形性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。

矩形教学设计

教学目标

1、知道矩形的定义和矩形与平行四边形之间的联系;能说出矩形的四个角都是直角和矩形的的对角线相等的性质;能推出直角三角形斜边上的中线等于斜边的一半的性质。

2、能运用以上性质进行简单的证明和计算。

此外,从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的思想,培养学生辨证唯物主义观点。

引导性材料

想一想:一般四边形与平行四边形之间的相互关系?在图的圆圈中填上四边形和平行四边形的字样来说明这种关系:即平行四边形是特殊的四边形,又具有一般四边形的一切性质;具有一些特殊的性质。

小学里已学过长方形,即矩形。显然,矩形是平行四边形,而且矩形还具有四个角都是直角(小学里已学过)等特殊性质,那么,如果在图中再画一个圈表示矩形,这个圈应画在哪里?

(让学生初步感知矩形与平行四边形的从属关系。)

演示:用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示如图,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的图形是什么图形(矩形)。

问题1:从上面的演示过程,可以发现:平行四边形具备什么条件时,就成了矩形?

说明与建议:教师的演示应充分展现变化过程,从而让学生深切地感受到短形是无数个平行四边形中的一个特例,同时,又使学生能正确地给出矩形的定义。

问题2:矩形是特殊的平行四边形,它除了有一个角是直角以外,还可能具有哪些平行四边形所没有的特殊性质呢?

说明与建议:让学生分组探索,有必要时,教师可引导学生,根据研究平行四边形获得的经验,分别从边、角、对角线三个方面探索矩形的特性,还可提醒学生,这种探索的基础是矩形有一个角是直角矩形的四个角都相等(矩形性质定理1),要学生给以证明(即课本例1后练习第1题)。

学生能探索得出矩形的邻边互相垂直的特性,教师可作说明:这与矩形的四个角是直角本质上是一致的,所以不必另列为一个性质。

学生探索矩形的四条对角线的大小关系时,如有困难,可引导学生测量并比较矩形两条对角线的长度,然后加以证明,得出性质定理2。

问题3:矩形的一条对角线把矩形分成两个直角三角形,矩形的对角线既互相平分又相等,由此,我们可以得到直角三角形的什么重要性质?

说明与建议:(1)让学生先观察图,并议论猜想,如学生有困难,教师可引导学生观察图中的一个直角三角形(如Rt△ABC),让学生自己发现斜边上的中线BO与斜线AC的大小关系,然后让学生自己给出如下证明:

证明:在矩形ABCD中,对角线AC、BD相交于点O,AC=BD(矩形的对角线相等)。

,AO=CO

在Rt△ABC中,BO是斜边AC上的中线,且 。

直角三角形斜边上的中线等于斜边的一半。

例题解析

例1:(即课本例1)

说明:本题难度不大,又有助于学生加深对性质定理的理解,教学中应引导学生探索解法:

如图,欲求对角线BD的长,由于BAD=90,AB=4cm,则只要再找出Rt△ABD中一条直角边的长,或一个锐角的度数,再从已知条件AOD=120出发,应用矩形的性质可知,ADB=30,另外,还可以引导学生探究△AOB是什么特殊的三角形(等边三角形),课本用了第一种解法,并给出了解几何计算题书写格式的示范;第二种解法如下:

∵四边形ABCD是矩形,

AC=BD(矩形的对角线相等)。

又 。

OA=BO,△AOB是等腰三角形,

∵AOD=120,AOB=180- 120= 60

AOB是等边三角形。

BO=AB=4cm,

BD=2BO=244cm=8cm。

例2:(补充例题)

已知:如图四边形ABCD中,ABC=ADC=90, E是AC的中点,EF平分BED交BD于点F。

(l)猜想:EF与BD具有怎样的关系?

(2)试证明你的猜想。

解:(l)EF垂直平分BD。

(2)证明:∵ABC=90,点E是AC的中点。

(直角三角形的斜边上的中线等于斜边的一半)。

同理: 。

BE=DE。

又∵EF平分BED。

EFBD,BF=DF。

说明:本例是一道不给出结论,需要学生自己观察---猜想---讨论的几何命题,有助于发展学生的推理(包括合情推理和逻辑推理)能力。如果学生不适应,或有困难,教师可根据实际情况加以引导,这种训练,重要的不是猜对了没有?证明了没有?而是让学生经历这样一种自己研究图形性质的过程,顺便指出:求解本题的重要基础是识图技能----能从复杂图形中分解出如图所示的三个基本图形。

课堂练习

1、课本例1后练习题第2题。

2、课本例1后练习题第4题。

小结

1、矩形的定义:

2、归纳总结矩形的性质:

对边平行且相等

四个角都是直角

对角线平行且相等

3、直角三角形斜边上的中线等于斜边的一半。

4、矩形的一条对角线把矩形分成两个全等的直角三角形;矩形的两条对角线把矩形分成四个全等的等腰三角形。因此,有关矩形的问题往往可化为直角三角形或等腰三角形的问题来解决。

作业

l.课本习题组第2题。

2、课本复习题四A组第6、7题。

初二数学教案【第三篇】

教学建议

知识结构:

重点难点分析:

是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简。商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重要的内容之一分母有理化,分母有理化的理解决定了最简二次根式化简的掌握。

教学难点是二次根式的除法与商的算术平方根的关系及应用。二次根式的除法与乘法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号。由于分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式。

教法建议:

1、 本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质。教师在此过程中给与适当的指导,提出问题让学生有一定的探索方向。

2、 本节内容可以分为三课时,第一课时讨论商的算术平方根的性质,并运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二课时讨论二次根式的除法法则,并运用这一法则进行简单的二次根式的除法运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现内出现分式或分数的情况;第三课时讨论分母有理化的概念及方法,并进行二次根式的乘除法运算,把运算结果分母有理化。这样安排使内容由浅入深,各部分相互联系,因此及彼,层层展开。

3、 引导学生思考想一想中的内容,培养学生思维的深刻性,教师组织学生思考、讨论过程中,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维。

教学设计示例

一、教学目标

1、掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;

2、会进行简单的二次根式的除法运算;

3、使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;

4、 培养学生利用二次根式的除法公式进行化简与计算的能力;

5、 通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;

6、 通过分母有理化的教学,渗透数学的简洁性。

二、教学重点和难点

1、重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行。

2、难点:二次根式的除法与商的算术平方根的关系及应用。

三、教学方法

从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节

内容可引导学生自学,进行总结对比。

四、教学手段

利用投影仪。

五、教学过程

(一) 引入新课

学生回忆及得算数平方根和性质: (a0,b0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的。)

学生观察下面的例子,并计算:

由学生总结上面两个式的关系得:

类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:

(二)新课

商的算术平方根。

一般地,有 (a0,b0)

商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

让学生讨论这个式子成立的条件是什么?a0,b0,对于为什么b0,要使学生通过讨论明确,因为b=0时分母为0,没有意义。

引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算。

例1 化简:

(1) ; (2) ; (3) ;

解∶(1)

(2)

(3)

说明:如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母均为正数。

例2 化简:

(1) ; (2) ;

解:(1)

(2)

让学生观察例题中分母的特点,然后提出, 的问题怎样解决?

再总结:这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况, 的问题,我们将在今后的学习中解决。

学生讨论本节课所学内容,并进行小结。

(三)小结

1、商的算术平方根的性质。(注意公式成立的条件)

2、会利用商的算术平方根的性质进行简单的二次根式的化简。

(四)练习

1、化简:

(1) ; (2) ; (3) 。

2、化简:

(1) ; (2) ; (3)

六、作业

教材习题;A组1.

七、板书设计

初二上册数学教学计划【第四篇】

一、学生起点分析

学生的知识技能基础:在本章的学习中,学生已会利用平均数的公式进行计算,并能解决一些相关的实际问题;在《有理数》和《实数》的章节中,学生曾学习用计算器计算数的加、减、乘、除、乘方和开方运算,已初步具有利用计算器处理数据的基本技能。

学生活动经验基础:学生在前面的数学学习活动中,已获得了从事统计活动所必须的数学方法,形成了动手实践、自主探索、合作交流的学习方式,积累了使用计算器处理数据和进行探索活动的一些数学活动经验。

二、学习任务分析

本节课的学习任务是:初步经历数据的收集、加工与整理的过程,通过自主探索,学会利用计算器求一组数据的平均数;通过例题和习题的学习,加强知识之间的联系,巩固对各种图表信息的识别和评判能力,发展学生初步的统计意识和数据处理能力,达成有关的情感态度目标。为此,本节课的教学目标是:

1、知识与技能:根据给定信息,会利用计算器求一组数据的平均数,并会进行数据的收集、加工与整理。

2、过程与方法:初步经历数据的收集、加工与整理的过程,发展学生初步的统计意识和数据处理能力。

3、情感与态度:通过使用计算器求平均数的探索活动,培养学生的探索精神和创新意识;通过相互间合作交流,让所有学生都有所获,共同发展。

三、教学过程设计

本节课设计了五个教学环节:第一环节:情境引入;第二环节:活动探究;第三环节:运用提高;第四环节:课堂小结;第五环节:布置作业。

第一环节:情境引入

内容:展示引例:20xx年第一季度我国各地区农村家庭平均每人现金收入情况表:(单位:元)

请计算这组数据的平均数,在计算过程中,你体会到什么困难吗?

显然,当一组数据比较大且比较多时,用笔计算平均数较麻烦,因此,需要一个帮手—计算器,这节课就来学习用计算器求平均数。

目的:通过以上用笔计算一组较大且较多数据的平均数,使学生感到笔算的麻烦与困难,产生用计算器求平均数的欲望,从而调动学生学习的积极主动性。另外,给这组数据赋予“我国各地区农村家庭平均每人现金收入情况”的背景,是想让学生关注社会的发展,增强社会责任感。

注意事项:引例不一定非要算出结果来,只要让学生尝试一下用笔计算较大且较多数据的平均数的困难,产生用计算器求平均数的欲望,就可引入课题,不要过多地耽误课堂时间。

第二环节:活动探究

内容:学生分组(拿同类型计算器的同学分在一起)活动探究,看哪个小组做得好:

(1)估计一下自己课桌的宽度,并将各组员的估计结果统计出来(精确厘米)。

(2)用计算器求出估计结果的平均值,你是怎么做的?与同伴交流。在学生分组合作探究的基础上,全班总结交流不同类型的计算器求平均数的一般步骤,教师根据反馈的信息,及时进行评价。

(3)用尺子量一量课桌的宽度,看看大家估计的结果怎么样。

各组派代表谈谈本组估计结果的准确度,对准确度较高的小组进行表扬,并评为优秀小组以资鼓励。

目的:活动(1)是让学生初步经历数据的收集、加工与整理的过程,进一步发展学生初步的统计意识和数据处理能力。

活动(2)是通过相互比较,引起学生对计算方式的思考,做出自我评判,从而正确掌握用计算器求平均数的方法。全班总结交流不同类型的计算器求平均数的一般步骤,可以开阔视野,增长才干。

活动(3)的评价是为了学生的成功感和自信心,激励他们继续探索和创新,把数学做得更好。

注意事项:教师首先要是熟悉本班学生所用各类型计算器的使用方法,其次在学生分组活动时,教师要巡视、倾听,鼓励学生自己探索计算器的用法,但在必要时可做适当的指导。

第三环节:运用提高

内容:

1、利用计算器计算下列数据的平均数:,,,,,,,,,,,,。

2、观察下图1,利用计算器计算上海东方大鲨鱼篮球队队员的平均年龄。

3、英语老师布置了10道选择题作为课堂练习,小丽将全班同学的解题情况

4、利用计算器计算本节课的引例中我国各地区农村家庭平均每人现金收入的平均数、中位数和众数,并回答下列问题:

(1)如果要如实反映我国农村的现金收入状况,你会用哪个数据?

(2)如果要展示我国农村发展形势好,你会用哪个数据?

(3)从这些数据中,你获得了哪些信息?有何感想?

目的:第1题是课本上的练习题,直接利用计算器计算一组数据的平均数。第2、3题分别是课本上的例题和练习题,作用是加强知识之间的联系,巩固对各种图表信息的识别和评判能力。把第2题课本例题放在练习题后,题目显得有梯度,能更好地体现循序渐进的原则。第4题前呼后应,解决引例中“悬案”,充分体现用计算器计算一组较大且较多数据的平均数的优越性,培养学生运用现代技术手段的主动意识,以及选择恰当的数据代表对问题作出评判的能力。

注意事项:第2、3题都有几个相同数据的求和,在输入这些数据时,要让学生注意键的连续使用。第4题要留出时间让学生交流各自获得的信息和感想,互相启发,共同提高。

八年级数学教案【第五篇】

教学目标:

1、了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

教学重点:

算术平方根的概念。

教学难点:

根据算术平方根的概念正确求出非负数的算术平方根。

教学过程

一、情境导入

请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?如果这块画布的面积是 ?这个问题实际上是已知一个正数的平方,求这个正数的问题?

这就要用到平方根的概念,也就是本章的主要学习内容。这节课我们先学习有关算术平方根的概念。

二、导入新课:

1、提出问题:(书P68页的问题)

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值。

一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根。a的算术平方根记为 ,读作根号a,a叫做被开方数。规定:0的算术平方根是0.

也就是,在等式 =a (x0)中,规定x = 。

2、 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来。

3、 想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如 表示25的算术平方根。

4、例1 求下列各数的算术平方根:

(1)100;(2)1;(3) ;(4)

三、练习

P69练习 1、2

四、探究:(课本第69页)

怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受 的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。

五、小结:

1、这节课学习了什么呢?

2、算术平方根的具体意义是怎么样的?

3、怎样求一个正数的算术平方根

六、课外作业:

P75习题活动第1、2、3题

相关推荐

热门文档

17 2807228