首页 > 学习资料 > 初中教案 >

八年级上册数学教案(优推10篇)

网友发表时间 3544858

本教案旨在帮助学生掌握八年级上册数学知识,通过系统讲解与实践练习,培养学生的逻辑思维能力和问题解决能力,提升数学素养。下面是勤劳的小编为大家分享的八年级上册数学教案(优推10篇)范例,欢迎借鉴参考。

八年级数学上册教案 【第一篇】

为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。

情境设置:

汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的变化而变化。

(1)你能用含v的代数式来表示t吗?

(2)时间t是速度v的函数吗?

设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同。从而自然地引入“反比例函数”概念。

为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。

一般式变形:(其中k均不为0)

通过对一般式的变形,让学生从“形”上掌握“反比例函数”的概念,在结合“思考”的几个问题,让学生从“神”神上体验“反比例函数”。

为加深难度,我又补充了几个练习:

1、为何值时,为反比例函数?

2是的反比例函数,是的正比例函数,则与成什么关系?

关于课堂教学:

由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。

在复习“函数”这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到如何表达。我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。一路走来,非常轻松。

对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的题型,班级中成绩偏下的同学也能很好的掌握。

而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。

经验感想:

1、课前认真准备,对授课效果的影响是不容忽视的。

2、教师的精神状态直接影响学生的精神状态。

3、数学教学一定要重概念,抓本质。

4、课堂上要注重学生情感,表情,可适当调整教学深度。

八年级上册数学教案 【第二篇】

教学目标:

1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:

重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现

教学过程

一、创设问题的情境,激发学生的'学习热情,导入课题

出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2(书中的P2图1—2)并回答:

1、观察图

1—2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C中有_______个小方格,即A的面积为______个单位。

2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:

3、图

1—2中,A,B,C之间的面积之间有什么关系?

学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A。B,C的关系呢?

二、做一做

出示投影3(书中P3图1—4)提问:

1、图

1—3中,A,B,C之间有什么关系?

2、图

1—4中,A,B,C之间有什么关系?

3、从图

1—1,1—2,1—3,1|—4中你发现什么?

学生讨论、交流形成共识后,教师总结:

以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、议一议

1、图

1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

2、你能发现直角三角形三边长度之间的关系吗?

在同学的交流基础上,老师板书:

直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”

也就是说:如果直角三角形的两直角边为a,b,斜边为c

那么

我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

3、分别以

5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

四、想一想

这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

五、巩固练习

1、错例辨析:

△ABC的两边为3和4,求第三边

解:由于三角形的两边为3、4

所以它的第三边的c应满足=25

即:c=5

辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题

△ ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。

(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C是斜边

综上所述这个题目条件不足,第三边无法求得。

八年级上册数学教案优秀26篇

7 § 1

六、作业

课本P7 § 2、3、4

八年级上册数学的教案 【第三篇】

1、平行四边形

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形

(1)矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定:有一个角是直角的平行四边形是矩形;

对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形

性质:菱形的四条边都相等;

菱形的对角线互相垂直,并且每一条对角线平分一组对角;

菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;

对角线互相垂直的平行四边形是菱形;

四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3、梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;

等腰梯形的两条对角线相等;

同一个底上的两个角相等的梯形是等腰梯形。

初二数学上册教案 【第四篇】

教学目标:

知识与技能:会解含有分母的一元一次不等式;能够用不等式表达数量之间的不等关系;能够确定不等式的整数解。

过程与方法:经历解方程和解不等式两种过程的比较,体会类比思想,发展学生的数学思考水平。

情感态度、价值观:通过一元一次不等式的学习,培养学生认真、坚持等良好学习习惯。.

教材分析:

本节教材首先让学生动手做一做解两个不等式;之后让大家谈谈解一元一次不等式与解一元一次方程的异同点;最后是关于通过列不等式表示数量之间不等关系的例题2、3,其中例3涉及到了不等式的正解数解问题。关于解含有分母的一元一次不等式,学生在去分母这一部可能容易出错,可以采用通过学生深度解决、师生总结交流方法、巩固应用等方式处理。关于一元一次不等式的整数解问题,学生确实会有一定困难,主要是思考不够认真,缺少方法等原因,教师要注重借助数轴的学法指导。

教学重点:

1、含有分母的一元一次不等式的解法

2、用不等式表达数量之间的不等关系

3、确定不等式的整数解

教学难点:

1、解含有分母的一元一次不等式时,去分母这一部的准确性。

2、不等式的整数解的确定

教学流程:

一、直接引入

我们学习了解一元一次方程和解一元一次不等式,它们之间有怎样的区别和联系呢今天我们来探究一下。

二、探究新知

(一)解一元一次方程和解一元一次不等式的异同点

1、出示问题,让学生板演

找两名同学,分别解下面两个问题:

(1)解方程:﹦

(2)解不等式:

2、小组讨论解一元一次方程和解一元一次不等式的过程的异同点。

3、师生交流。

相同点:解一元一次方程和解一元一次不等式的步骤相同,依次为:去分母去括号移项,合并同类项化系数为1。

不同点:在解一元一次不等式的化系数为1时,要注意不等式两边乘或除以同一个负数时,不等号要改变方向。

4、运用新知。

将下列不等式中的分母化去:

八年级上册数学教案 【第五篇】

一。教学目标:

1、了解方差的定义和计算公式。

2、理解方差概念的产生和形成的过程。

3、会用方差计算公式来比较两组数据的波动大小。

二。重点、难点和难点的突破方法:

1、重点:方差产生的必要性和应用方差公式解决实际问题。

2、难点:理解方差公式

3、难点的突破方法:

方差公式:S = [( - ) +( - ) +…+( - )]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。

(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。

(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。

(3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

三。例习题的意图分析:

1、教材P125的讨论问题的意图:

(1)。创设问题情境,引起学生的学习兴趣和好奇心。

(2)。为引入方差概念和方差计算公式作铺垫。

(3)。介绍了一种比较直观的衡量数据波动大小的方法——画折线法。

(4)。客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。

2、教材P154例1的设计意图:

(1)。例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。

(2)。例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。

四。课堂引入:

除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。

五。例题的分析:

教材P154例1在分析过程中应抓住以下几点:

1、题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。

2、在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。

3、方差怎样去体现波动大小?

这一问题的提出主要复习巩固方差,反映数据波动大小的规律。

六。随堂练习:

1、从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)

甲:9、10、11、12、7、13、10、8、12、8;

乙:8、13、12、11、10、12、7、7、9、11;

问:(1)哪种农作物的苗长的比较高?

(2)哪种农作物的苗长得比较整齐?

2、段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?

测试次数1 2 3 4 5

段巍13 14 13 12 13

金志强10 13 16 14 12

参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐

2、段巍的成绩比金志强的成绩要稳定。

七。课后练习:

1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为。

2、甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

甲:7、8、6、8、6、5、9、10、7、4

乙:9、5、7、8、7、6、8、6、7、7

经过计算,两人射击环数的平均数相同,但S S,所以确定去参加比赛。

3、甲、乙两台机床生产同种零件,10天出的次品分别是( )

甲:0、1、0、2、2、0、3、1、2、4

乙:2、3、1、2、0、2、1、1、2、1

分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?

4、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

小爽

小兵

如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

答案:1. 6 2.>、乙;3. =、S =、 =1. 5、S =,乙机床性能好

4、 =、S =;

=、S =

选择小兵参加比赛。

八年级数学上册全册教案 【第六篇】

第11章 三角形

教材内容

本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。

三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用。

教学目标

〔知识与技能〕 12999. com

1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线;2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形;3、会证明三角形内角和等于1800,了解三角形外角的性质。4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行简单的平面镶嵌设计。

〔过程与方法〕

1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。

〔情感、态度与价值观〕

1、体会数学与现实生活的联系,增强克服困难的勇气和信心;2、会应用数学知识解决一些简单的实际问题,增强应用意识;3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。

重点难点

三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。

课时分配

与三角形有关的线段 ……………………………………… 2课时

与三角形有关的角 ………………………………………… 2课时

多边形及其内角和 ………………………………………… 2课时

本章小结 ………………………………………………………… 2课时

三角形的边

[教学目标]

〔知识与技能〕

1了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形 ;

2理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点]三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。

[教学过程]

一、情景导入

三角形是一种最常见的几何图形, [投影1-6]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。

那么什么叫做三角形呢?

二、三角形及有关概念

不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。

注意:三条线段必须①不在一条直线上,②首尾顺次相接。

组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。

三角形ABC用符号表示为△ABC。三角形ABC的顶点C所对的边AB可用c 表示,顶点B所对的边AC可用b表示,顶点A所对的边BC可用a表示。

三、三角形三边的不等关系

探究:[投影7]任意画一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?

有两条路线:(1)从B→C,(2)从B→A→C;不一样, AB+AC>BC�

同样地有 AC+BC>AB ②

AB+BC>AC ③

由式子①②③我们可以知道什么?

三角形的任意两边之和大于第三边。

四、三角形的分类

我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形�

按角分类:

三角形 直角三角形

斜三角形 锐角三角形

钝角三角形

那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。

三边都相等的三角形叫做等边三角形;

有两条边相等的三角形叫做等腰三角形;

三边都不相等的三角形叫做不等边三角形。

显然,等边三角形是特殊的等腰三角形。

按边分类:

三角形 不等边三角形

等腰三角形 底和腰不等的等腰三角形

等边三角形

五、例题

例 用一条长为18㎝的细绳围成一个等腰三角形。(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边长为4㎝的等腰三角形吗?为什么?

分析:(1)等腰三角形三边的长是多少?若设底边长为x㎝,则腰长是多少?(2)“边长为4㎝”是什么意思?

解:(1)设底边长为x㎝,则腰长2 x㎝。

x+2x+2x=18

解得x=

所以,三边长分别为㎝,㎝,㎝.

(2)如果长为4㎝的边为底边,设腰长为x㎝,则

4+2x=18

解得x=7

如果长为4㎝的边为腰,设底边长为x㎝,则

2×4+x=18

解得x=10

因为4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是4㎝的等腰三角形。

由以上讨论可知,可以围成底边长是4㎝的等腰三角形。

五、课堂练习

课本4頁练习1、2题。

六、课堂小结

1、三角形及有关概念;

2、三角形的分类;

3、三角形三边的不等关系及应用。

作业:

课本8頁1、2、6;

教后记

三角形的高、中线与角平分线

〔教学目标〕

〔知识与技能〕

1、经历画图的过程,认识三角形的高、中线与角平分线;

2、会画三角形的高、中线与角平分线;3、了解三角形的三条高所在的直线,三条中线,三条角平分线分别交于一点。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

〔重点难点〕三角形的高、中线与角平分线是重点;三角形的角平分线与角的平分线的区别,画钝角三角形的高是难点。

〔教学过程〕

一、导入新课

我们已经知道什么是三角形,也学过三角形的高。三角形的主要线段除高外,还有中线和角平分线值得我们研究。

二、三角形的高

请你在图中画出△ABC的一条高并说说你画法。

从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高,表示为AD⊥BC于点D。

注意:高与垂线不同,高是线段,垂线是直线。

请你再画出这个三角形AB 、AC边上的高,看看有什么发现?

三角形的三条高相交于一点。

如果△ABC是直角三角形、钝角三角形,上面的结论还成立吗?

现在我们来画钝角三角形三边上的高,如图。

显然,上面的结论成立。

请你画一个直角三角形,再画出它三边上的高。

上面的结论还成立。

三、三角形的中线

如图,我们把连结△ABC的顶点A和它的对边BC的中点D,所得线段AD叫做△ABC的边BC上的中线,表示为BD=DC或BD=DC=1/2BC或2BD=2DC=BC.

请你在图中画出△ABC的另两条边上的中线,看看有什么发现?

三角的三条中线相交于一点。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。

上面的结论还成立。

四、三角形的角平分线

如图,画∠A的平分线AD,交∠A所对的边BC于点D,所得线段AD叫做△ABC的角平分线,表示为∠BAD=∠CAD或∠BAD=∠CAD=1/2∠BAC或2∠BAD=2∠CAD=∠BAC。

思考:三角形的角平分线与角的平分线是一样的吗?

三角形的角平分线是线段,而角的平分线是射线,是不一样的。

请你在图中再画出另两个角的平分线,看看有什么发现?

三角形三个角的平分线相交于一点。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。

上面的结论还成立。

想一想:三角形的三条高、三条中线、三条角平分线的交点有什么不同?

三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。

五、课堂练习

课本5頁练习1、2题。

六、课堂小结

1、三角形的高、中线、角平分线的概念和画法。

2、三角形的三条高、三条中线、三条角平分线及交点的位置规律。

七作业:

课本8頁3、4;

八、教后记

三角形的稳定性

[教学目标]

〔知识与技能〕

1、 知道三角形具有稳定性,四边形没有稳定性;2、了解三角形的稳定性在生产、生活中的应用。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点]三角形稳定性及应用。

[教学过程]

一、情景导入

盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?

二、三角形的稳定性

〔实验〕1、把三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?

不会改变。

2、把四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?

会改变。

3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?

不会改变。

从上面的实验中,你能得出什么结论?

三角形具有稳定性,而四边形不具有稳定性。

三、三角形稳定性和四边形不稳定的应用

三角形具有稳定性固然好,四边形不具有稳定性也未必不好,它们在生产和生活中都有广泛的应用。如:

钢架桥、屋顶钢架和起重机都是利用三角形的稳定性,活动挂架则是利用四边形的不稳定性。

你还能举出一些例子吗?

四、课堂练习

1、下列图形中具有稳定性的是( )

A正方形 B长方形 C直角三角形 D平行四边形

2、要使下列木架稳定各至少需要多少根木棍?

3、课本7頁练习。

五作业:8頁5;9頁10题。

六、教后记

三角形的内角

[教学目标]

〔知识与技能〕

掌握三角形内角和定理。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点]三角形内角和定理是重点;三角形内角和定理的证明是难点。

[教学过程]

一、导入新课

我们在小学就知道三角形内角和等于1800,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢?

二、三角形内角和的证明

回顾我们小学做过的实验,你是怎样操作的?

把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出

∠BCD的度数,可得到∠A+∠B+∠ACB=1800。[投影1]

图1

想一想,还可以怎样拼?

①剪下∠A,按图(2)拼在一起,可得到∠A+∠B+∠ACB=1800。

图2

②把和剪下按图(3)拼在一起,可得到∠A+∠B+∠ACB=1800。

如果把上面移动的角在图上进行转移,由图1你能想到证明三角形内角和等于1800的方法吗?

已知△ABC,求证:∠A+∠B+∠C=1800。

证明一

过点C作CM∥AB,则∠A=∠ACM,∠B=∠DCM,

又∠ACB+∠ACM+∠DCM=1800

∴∠A+∠B+∠ACB=1800。

即:三角形的内角和等于1800。

由图2、图3你又能想到什么证明方法?请说说证明过程。

三、例题

例 如图,C岛在A岛的北偏东500方向,B岛在A岛的北偏东800方向,C岛在B岛的北偏西400方向,从C岛看A、B两岛的视角∠ACB是多少度?

分析:怎样能求出∠ACB的度数?

根据三角形内角和定理,只需求出∠CAB和∠CBA的度数即可。

∠CAB等于多少度?怎样求∠CBA的度数?

解:∠CBA=∠BAD-∠CAD=800-500=300

∵AD∥BE ∴∠BAD+∠ABE=1800

∴∠ABE=1800-∠BAD=1800-800=1000

∴∠ABC=∠ABE-∠EBC=1000-400=600

∴∠ACB=1800-∠ABC-∠CAB=1800-600-300=900

答:从C岛看AB两岛的视角∠ACB=1800是900。

四、课堂练习

课本13頁1、2题。

五作业:

16頁1、3、4;

六、教后记

三角形的外角

[教学目标]

〔知识与技能〕

理解三角形的外角;2、掌握三角形外角的性质,能利用三角形外角的性质解决问题。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点]三角形的外角和三角形外角的性质是重点;理解三角形的外角是难点。

[教学过程]

一、导入新课

〔投影1〕如图,△ABC的三个内角是什么?它们有什么关系?

是∠A、∠B、∠C,它们的和是1800。

若延长BC至D,则∠ACD是什么角?这个角与△ABC的三个内角有什么关系?

二、三角形外角的概念

∠ACD叫做△ABC的外角。也就是,三角形一边与另一边的延长线组成的角,叫做三角形的外角。

想一想,三角形的外角共有几个?

共有六个。

注意:每个顶点处有两个外角,它们是对顶角。研究与三角形外角有关的问题时,通常每个顶点处取一个外角。

三、三角形外角的性质

容易知道,三角形的外角∠ACD与相邻的内角∠ACB是邻补角,那与另外两个角有怎样的数量关系呢?

〔投影2〕如图,这是我们证明三角形内角和定理时画的辅助线,你能就此图说明∠ACD与∠A、 ∠B的关系吗?

∵CE∥AB, ∴∠A=∠1,∠B=∠2

又∠ACD=∠1+∠2

∴∠ACD=∠A+∠B

你能用文字语言叙述这个结论吗?

三角形的一个外角等于与它不相邻的两个内角之和。

由加数与和的关系你还能知道什么?

三角形的一个外角大于与它不相邻的任何一个内角。

即 ,。

四、例题

〔投影3〕例 如图,∠1、∠2、∠3是三角形ABC的三个外角,它们的和是多少?

分析:∠1与∠BAC、∠2与∠ABC、∠3与∠ACB有什么关系?∠BAC、ABC、∠ACB有什么关系?

解:∵∠1+∠BAC=1800,∠2+∠ABC=1800,∠3+∠ACB=1800,

∴∠1+∠BAC+∠2+∠ABC+∠3+∠ACB=5400

又∠BAC+∠ABC+∠ACB=1800

∴∠1+∠2+∠3==3600。

你能用语言叙述本例的结论吗?

三角形外角的和等于3600。

五、课堂练习

课本15頁练习;

六、课堂小结

1、什么是三角形外角?

2、三角形的外角有哪些性质?

七、作业:

课本12頁5、6;

八、教后记

多边形

[教学目标]

〔知识与技能〕

1、 了解多边形及有关概念,理解正多边形的概念。2、区别凸多边形与凹多边形。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点]多边形及有关概念、正多边形的概念是重点;区别凸多边形与凹多边形是难点。

[教学过程]

一、情景导入

[投影1]看下面的图片,你能从中找出由一些线段围成的图形吗?

二、多边形及有关概念

这些图形有什么特点?

由几条线段组成;它们不在同一条直线上;首尾顺次相接。

这种在平面内,由一些不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形。

多边形按组成它的线段的条数分成三角形、四边形、五边形……、n边形。这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。

与三角形类似地,多边形相邻两边组成的角叫做多边形的内角,如图中的∠A、∠B、∠C、∠D、∠E。多边形的边与它的邻边的延长线组成的角叫做多边形的外角。如图中的∠1是五边形ABCDE的一个外角。[投影2]

连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线。

四边形有几条对角线?五边形有几条对角线?画图看看。

你能猜想n边形有多少条对角线吗?说说你的想法。

n边形有1/2n(n-3)条对角线。因为从n边形的一个顶点可以引n-3条对角线,n个顶点共引n(n-3)条对角线,又由于连接任意两个顶点的两条对角线是相同的,所以,n边形有1/2n(n-3)条对角线。

三、凸多边形和凹多边形

[投影3]如图,下面的两个多边形有什么不同?

在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形。

注意:今后我们讨论的多边形指的都是凸多边形。

四、正多边形的概念

五、课堂练习

课本21頁练习1、2。

3、有五个人在告别的时候相互各握了一次手,他们共握了多少次手?你能找到一个几何模型来说明吗?

六、课堂小结

1、多边形及有关概念。

2、区别凸多边形和凹多边形。

3、正多边形的概念。

4、n边形对角线有1/2n(n-3)条。

七、作业:

课本24頁1。

八、教后记

多边形的内角和

[教学目标]

〔知识与技能〕

1、 了解多边形的内角、外角等概念;

2、 2、能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算。

〔过程与方法〕

在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯

〔情感、态度与价值观〕

体会数学与现实生活的联系,增强克服困难的勇气和信心

[重点难点]多边形的内角和与多边形的外角和公式是重点;多边形的内角和定理的推导是难点。

[教学过程]

一、复习导入

我们已经证明了三角形的内角和为180°,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360°,现在你能利用三角形的内角和定理证明吗?

二、多边形的内角和

〔投影1〕如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?

可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角和=△ABD的内角和+△BDC的内角和=2×180°=360°。

类似地,你能知道五边形、六边形…… n边形的内角和是多少度吗?

〔投影2〕观察下面的图形,填空:

五边形 六边形

从五边形一个顶点出发可以引 对角线,它们将五边形分成 三角形,五边形的内角和等于 ;

从六边形一个顶点出发可以引 对角线,它们将六边形分成 三角形,六边形的内角和等于 ;

〔投影3〕从n边形一个顶点出发,可以引 对角线,它们将n边形分成 三角形,n边形的内角和等于 。

n边形的内角和等于(n一2)·180°.

从上面的讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求。现在以五边形为例,你还有其它的分法吗?

分法一 〔投影3〕如图1,在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形。

∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°。

图1 图2

分法二 〔投影4〕如图2,在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形。

∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°

如果把五边形换成n边形,用同样的方法可以得到n边形内角和=(n一2)×180°.

三、例题

〔投影6〕例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?

如图,已知四边形ABCD中,∠A+∠C=180°,求∠B与∠D的关系。

分析:∠A、∠B、∠C、∠D有什么关系?

解:∵∠A+∠B+∠C+∠D=(4-2)×180°=360°

又∠A+∠C=180°

∴∠B+∠D= 360°-(∠A+∠C)=180°

这就是说,如果四边形一组对角互补,那么另一组对角也互补。

〔投影7〕例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和。六边形的外角和等于多少?

如图,已知∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角,求∠1+∠2+∠3+∠4+∠5+∠6的值。

分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?

解:∵∠1+∠BAF=180° ∠2+∠ABC=180°∠3+∠BAD=180°

∠4+∠CDE=180°∠5+∠DEF=180° ∠6+∠EFA=180°

∴∠1+∠BAF+∠2+∠ABC+∠3+∠BAD+∠4+∠CDE+∠5+∠DEF+∠6+∠EFA=6×180°

又∠1+∠2+∠3+∠4+∠5+∠6=4×180°

∴∠BAF+∠ABC+∠BAD+∠CDE+∠DEF+∠EFA=6×180°-4×180°=360°

这就是说,六边形形的外角和为360°。

如果把六边形换成n边形可以得到同样的结果:

n边形的外角和等于360°。

对此,我们也可以这样来理解。〔投影8〕如图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.

四、课堂练习

课本24頁1、2、3题。

五、课堂小结

n边形的内角和是多少度?

n边形的外角和是多少度?

六、作业:

课本24頁2、3;

七、教后记

本章小结

一、知识结构

二、回顾与思考

1、什么是三角形?什么是多边形?什么是正多边形?

三角形是不是多边形?

2、什么是三角形的高、中线、角平分线?什么是对角线?

三角形有对角线吗?n边形的的对角线有多少条?

3、三角形的三条高,三条中线,三条角平分线各有什么特点?

4、三角形的内角和是多少?n边形的内角和是多少?

你能用三角形的内角和说明n边形的内角和吗?

5、三角形的外角和是多少?n边形的外角和是多少?

你能说明为什么多边形的外角和与边数无关吗?

6、怎样才算是平面镶嵌?平面镶嵌的条件是什么?能单独进行平面镶嵌的多边形有哪些?

你能举一个几个多边形进行平面镶嵌的例子吗?

三、例题导引

例1 如图,在△ABC中,∠A︰∠B︰∠C=3︰4︰5,BD、CE分别是边AC、AB上的高,BD、CE相交于点H,求∠BHC的度数。 例2 如图,把△ABC沿DE折叠,当点A落在四边形BCDE内部时,

探索∠A与∠1+∠2有什么数量关系?并说明理由。

例3 如图所示,在△ABC中,△ABC的内角平分线与外角平分线交于点P,试说明∠P=1/2∠A.

四、巩固练习

课本28—29頁复习题7(第3题可不做).

五、教后记

第十二章 全等三角形

单元要点分析

教学内容

本章的主要内容是全等三角形。主要学习全等三角形的性质以及探索判定三角形全等的方法,并学会怎样应用全等三角形进行证明,本章划分为三个小节,第一节学习三角形全等的概念、性质;第二节学习三角形全等的判定方法和直角三角形全等的特殊判定方法;第三节利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明。

教材分析

教材力求创设现实、有趣的问题情境,使学生经历从现实活动中抽象出几何模型和运用所学内容解决实际问题的过程。在内容呈现上,把研究三角形全等条件的重点放在第一个条件上,通过“边边边”条件探索什么是三角形的判定,如何判定,怎样进行推理论证,怎样正确地表达证明过程。学生开始学习三角形判定定理时的困难在于定理的证明,而这些推理证明并不要求学生掌握。为了突出判定方法这条主渠道,教材都作为基本事实提出来,在画图、实验中让学生知道它们的正确性就可以了。在“角的平分线的性质”一节中的两个互逆定理,只要求学生了解其条件与结论之间的关系,不必介绍互逆命题、互逆定理等内容,这将在“勾股定理”中介绍。

三维目标

1.知识与技能

在探索全等三角形的性质与判定中,提高认知水平,积累数学活动经验。

2.过程与方法

经历探索三角形全等的判定的,发展空间观念和有条理的表达能力,掌握两个三角形全等的判定并应用于实际之中。

3.情感、态度与价值观

培养良好的观察、操作、想象、推理能力,感悟几何学的内涵。

重、难点与关键

1.重点:使学生理解证明的基本过程,掌握用综合法证明的格式。

2.难点:领会证明的分析思路,学会运用综合法证明的格式。

3.关键:突出三角形全等的判定方法这条主线,淡化对定理的证明。

教学建议

1.注意使学生经历探索三角形性质及三角形全等的判定的过程。在教学中鼓励学生观察、操作、推理,运用多种方式探索三角形有关性质。

2.注重创设具有现实性、趣味性和挑战性的情境,体现三角形的广泛应用。

初二数学上册教案 【第七篇】

1、教材分析

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理。因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

难点:四边形的概念及四边形不稳定性的理解和应用。在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上在同一平面内这个条件,这几个字的意思学生不好理解,所以是难点。

2、教法建议

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决。结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。

一、素质教育目标

(一)知识教学点

1、使学生掌握四边形的有关概念及四边形的内角和外角和定理。

2、了解四边形的不稳定性及它在实际生产,生活中的应用。

(二)能力训练点

1、通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。

2、通过推导四边形内角和定理,对学生渗透化归思想。

3、会根据比较简单的条件画出指定的四边形。

4、讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。

(三)德育渗透点

使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣。

(四)美育渗透点

通过四边形内角和定理数学,渗透统一美,应用美。

二、学法引导

类比、观察、引导、讲解

三、重点难点疑点及解决办法

1、教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。

2、教学难点:理解四边形的。有关概念中的一些细节问题;四边形不稳定性的理解和应用。

3、疑点及解决办法:四边形的定义中为什么要有在平面内,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。

四、课时安排

2课时

五、教具学具准备

投影仪、胶片、四边形模型、常用画图工具

六、师生互动活动设计

教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。

第一课时

七、教学步骤

复习引入

在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一

章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题。

引入新课

用投影仪打出课前画好的教材中P119的图。

师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形)。

讲解新课

1、四边形的有关概念

结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:

(1)要结合图形。

(2)要与三角形类比。

(3)讲清定义中的关键词语。如四边形定义中要说明为什么加上同一平面内而三角形的定义中为什么不加同一平面内(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图42中的点。我们现在只研究平面图形,故在定义中加上在同一平面内的限制)。

(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4—3用对角线分成的这些三角形与原四边形的关系。

(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图41。

(6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4—4,图4—5。

2、四边形内角和定理

教师问:

(1)在图4—3中对角线AC把四边形ABCD分成几个三角形?

(2)在图4—6中两条对角线AC和BD把四边形分成几个三角形?

(3)若在四边形ABCD如图4—7内任取一点O,从O向四个顶点作连线,把四边形分成几个三角形。

我们知道,三角形内角和等于180,那么四边形的内角和就等于:

①2180=360如图4

②4180—360=360如图4—7。

例1已知:如图48,直线于B、于C。

求证:(1) (2) 。

本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出。

总结、扩展

1、四边形的有关概念。

2、四边形对角线的作用。

3、四边形内角和定理。

八、布置作业

教材P128中1(1)、2、 3。

九、板书设计

四边形有关概念

四边形内角和

例1

十、随堂练习

教材P122中1、2、3。

八年级数学上册教案 【第八篇】

Ⅰ。教学任务分析

教学目标

知识与技能 使学生理解正比例函数的概念,会用描点法画正比例函数图象,掌握正比例函数的性质。

过程与能力 培养学生数学建模的能力。

情感与态度 实例引入,激发学生学习数学的兴趣。

教学重点 探索正比例函数的性质。

教学难点 从实际问题情境中建立正比例函数的数学模型。

Ⅱ。教学过程设计

问题及师生行为 设计意图

一、创设问题,激发兴趣

问题1将下列问题中的变量用函数表示出来:

(1)小明骑自行车去郊游,速度为4km/h,其行驶路程y随时间x变化而变化;

(2)三角形的底为10cm,其面积y随高x的变化而变化;

(3)笔记本的单价为3元,买笔记本所要的钱数y随作业本数量x的变化而变化。

解:(1)y=4x;(2)y=5x;(3)y=3x.

教师提出问题,学生独立思考并回答问题。

教师点评,并且提醒学生注意用x表示y. 问题引�

二、诱导参与,探究新知

思考:观察函数关系式:

① y=4x; ② y=5x; ③ y=3x.

这些函数有什么特点?

都是y等于一个常量与x的乘积。

教师提出问题,并引导学生观察:

学生观察思考并回答问题。

三、引导归纳,提炼新知

(板书)正比例函数的概念:

一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。

注意:x 的取值范围是全体实数。

由教师引导,学生观察得出结论。体现学生为主体,教师为主导的关系。

通过板书,突出本节课的重点。

四、指导应用,发展能力

1、下列函数是否是正比例函数?比例系数是多少?

(1) 是,比例系数k=8. (2) 不是。

(3) 是,比例系数k= 。 (4) 不是。

填空

1、若函数y=(2m2+8)xm2-8+(m+3)是正比例函数,则m的值是___-3____.

题 1请学生口答, 题2学生独立完成,并到黑板板书,教师评价书写规范。

在本次活动中,教师要关注:

学生能否准确地理解正比例函数的定义,注意二次项系数不能为0.

五、探究新知

例1 画出正比例函数y=x的图象。

解:(1)列表:

x --- -2 -1 0 1 2 ---

y --- -2 -1 0 1 2 ---

画出函数y=x的图象。

(1)列表: (2)描点: (3)连线:

想一想

除了用描点法外,还有其他简单的方法画正比例函数图象吗?

根据两点确定一条直线,我们可以经过原点与点(1,k)画直线,即两点法。

同理,画出y=-x的图象。

师生共同分析:两个图象的共同点:都是经过原点的直线。不同点:函数y=x的图象从左向右呈上升状态,即随着x的增大y也增大,经过第一、三象限。

函数y=-x的图象从左向右呈下降状态,即随x增大y反而减小,经过第二、四象限。

归纳:一般地,正比例函数y=kx(k是常数,k≠ 0)的图象是一条经过原点的直线。

当k>0时,图象经过一、三象限,从左向右上升,即随x的增大y也增大;

当k<0时,图象经过二、四象限,从左向右下降,即随x增大y反而减小。

由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.

六、指导应用,发展能力

例2 在同一直角坐标系中画出y=x,y=2x,y=3x的函数图象,并比较它们的异同点。

相同点:图象经过一、三象限,从左向右上升;

不同点:倾斜度不同, y=x,y=2x,y=3x的函数图象离y轴越来越近。

例3 在同一直角坐标系中画出y=-x,y=-2x,y=-3x的函数图象,并比较它们的异同点。

相同点:图象经过二、四象限,从左向右下降;

不同点:倾斜度不同, y=-x,y=-2x,y=-3x的函数图象离y轴越来越近。

在y=kx中,k的绝对值越大,函数图象越靠近y轴。

八年级上册数学教案 【第九篇】

第11章平面直角坐标系

11。1平面上点的坐标

第1课时平面上点的坐标(一)

教学目标

知识与技能

1。知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。

2。理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。已知点的坐标,能在平面直角坐标系中描出点。

3。能在方格纸中建立适当的平面直角坐标系来描述点的位置。

过程与方法

1。结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。

2。学会用有序实数对和平面直角坐标系中的点来描述物体的位置。

情感、态度与价值观

通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。

重点难点

重点

认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。

难点

理解坐标系中的坐标与坐标轴上的数字之间的关系。

教学过程

一、创设情境、导入新知

师:如果让你描述自己在班级中的位置,你会怎么说?

生甲:我在第3排第5个座位。

生乙:我在第4行第7列。

师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。

二、合作探究,获取新知

师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体

的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?

生:3排5号。

师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。谁来说说我们应该怎样表示一个物体的位置呢?

生:用一个有序的实数对来表示。

师:对。我们学过实数与数轴上的点是一一对应的,有序实数对是不是也可以和一个点对应起来呢?

生:可以。

教师在黑板上作图:

我们可以在平面内画两条互相垂直、原点重合的数轴。水平的数轴叫做x轴或横轴,取向右为

正方向;竖直的数轴叫做y轴或纵轴,取向上为正方向;两轴交点为原点。这样就构成了平面直角坐标系,这个平面叫做坐标平面。

师:有了平面直角坐标系,平面内的点就可以用一个有序实数对来表示了。现在请大家自己动手画一个平面直角坐标系。

学生操作,教师巡视。教师指正学生易犯的错误。

教师边操作边讲解:

如图,由点P分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是5,我们就说P点的横坐标是3,纵坐标是5,我们把横坐标写在前,纵坐标写在后,(3,5)就是点P的坐标。在x轴上的点,过这点向y轴作垂线,对应的坐标是0,所以它的纵坐标就是0;在y轴上的点,过这点向x轴作垂线,对应的坐标是0,所以它的横坐标就是0;原点的横坐标和纵坐标都是0,即原点的坐标是(0,0)。

教师多媒体出示:

师:如图,请同学们写出A、B、C、D这四点的坐标。

生甲:A点的坐标是(—5,4)。

生乙:B点的坐标是(—3,—2)。

生丙:C点的坐标是(4,0)。

生丁:D点的坐标是(0,—6)。

师:很好!我们已经知道了怎样写出点的坐标,如果已知一点的'坐标为(3,—2),怎样在平面直角坐标系中找到这个点呢?

教师边操作边讲解:

在x轴上找出横坐标是3的点,过这一点向x轴作垂线,横坐标是3的点都在这条直线上;在y轴上找出纵坐标是—2的点,过这一点向y轴作垂线,纵坐标是—2的点都在这条直线上;这两条直线交于一点,这一点既满足横坐标为3,又满足纵坐标为—2,所以这就是坐标为(3,—2)的点。下面请同学们在方格纸中建立一个平面直角坐标系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)这几个点。

学生动手作图,教师巡视指导。

三、深入探究,层层推进

师:两个坐标轴把坐标平面划分为四个区域,从x轴正半轴开始,按逆时针方向,把这四个区域分别叫做第一象限、第二象限、第三象限和第四象限。注意:坐标轴不属于任何一个象限。在同一象限内的点,它们的横坐标的符号一样吗?纵坐标的符号一样吗?

生:都一样。

师:对,由作垂线求坐标的过程,我们知道第一象限内的点的横坐标的符号为+,纵坐标的符号也为+。你能说出其他象限内点的坐标的符号吗?

生:能。第二象限内的点的坐标的符号为(—,+),第三象限内的点的坐标的符号为(—,—),第四象限内的点的坐标的符号为(+,—)。

师:很好!我们知道了一点所在的象限,就能知道它的坐标的符号。同样的,我们由点的坐标也能知道它所在的象限。一点的坐标的符号为(—,+),你能判断这点是在哪个象限吗?

生:能,在第二象限。

四、练习新知

师:现在我给出几个点,你们判断一下它们分别在哪个象限。

教师写出四个点的坐标:A(—5,—4),B(3,—1),C(0,4),D(5,0)。

生甲:A点在第三象限。

生乙:B点在第四象限。

生丙:C点不属于任何一个象限,它在y轴上。

生丁:D点不属于任何一个象限,它在x轴上。

师:很好!现在请大家在方格纸上建立一个平面直角坐标系,在上面描出这些点。

学生作图,教师巡视,并予以指导。

五、课堂小结

师:本节课你学到了哪些新的知识?

生:认识了平面直角坐标系,会写出坐标平面内点的坐标,已知坐标能描点,知道了四个象限以及四个象限内点的符号特征。

教师补充完善。

教学反思

物体位置的说法和表述物体的位置等问题,学生在实际生活中经常遇到,但可能没有想到这些问题与数学的联系。教师在这节课上引导学生去想到建立一个平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力。在教学中我让学生由生活中的实例与坐标的联系感受坐标的实用性,增强了学生学习数学的兴趣。

第2课时平面上点的坐标(二)

教学目标

知识与技能

进一步学习和应用平面直角坐标系,认识坐标系中的图形。

过程与方法

通过探索平面上的点连接成的图形,形成二维平面图形的概念,发展抽象思维能力。

情感、态度与价值观

培养学生的合作交流意识和探索精神,体验通过二维坐标来描述图形顶点,从而描述图形的方法。

重点难点

重点

理解平面上的点连接成的图形,计算围成的图形的面积。

难点

不规则图形面积的求法。

教学过程

一、创设情境,导入新知

师:上节课我们学习了平面直角坐标系的概念,也学习了已知点的坐标,怎样在平面直角坐标系中把这个点表示出来。下面请大家在方格纸上建立一个平面直角坐标系,并在上面标出A(5,1),B(2,1),C(2,—3)这三个点。

学生作图。

教师边操作边讲解:

二、合作探究,获取新知

师:现在我们把这三个点用线段连接起来,看一下得到的是什么图形?

生甲:三角形。

生乙:直角三角形。

师:你能计算出它的面积吗?

生:能。

教师挑一名学生:你是怎样算的呢?

生:AB的长是5—2=3,BC的长是1—(—3)=4,所以三角形ABC的面积是×3×4=6。

师:很好!

教师边操作边讲解:

大家再描出四个点:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并将它们依次连接起来看看形成的是什么

图形?

学生完成操作后回答:平行四边形。

师:你能计算它的面积吗?

生:能。

教师挑一名学生:你是怎么计算的呢?

生:以BC为底,A到BC的垂线段AE为高,BC的长为4,AE的长为3,平行四边形的面积就是4×3=12。师:很好!刚才是已知点,我们将它们顺次连接形成图形,下面我们来看这样一个连接成的图形:

教师多媒体出示下图:

八年级数学上册教案 【第十篇】

一、学习目标:1.使学生了解运用公式法分解因式的意义;

2.使学生掌握用平方差公式分解因式

二、重点难点

重 点: 掌握运用平方差公式分解因式。

难 点: 将单项式化为平方形式,再用平方差公式分解因式;

学习方法:归纳、概括、总结

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。

1.请看乘法公式

(a+b)(a-b)=a2-b2 (1)

左边是整式乘法,右边是一个多项式,把这个等式反过来就是

a2-b2=(a+b)(a-b) (2)

左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。

a2-b2=(a+b)(a-b)

2.公式讲解

如x2-16

=(x)2-42

=(x+4)(x-4).

9 m 2-4n2

=(3 m )2-(2n)2

=(3 m +2n)(3 m -2n)

四、精讲精练

例1、把下列各式分解因式:

(1)25-16x2; (2)9a2- b2.

例2、把下列各式分解因式:

(1)9(m+n)2-(m-n)2; (2)2x3-8x.

补充例题:判断下列分解因式是否正确。

(1)(a+b)2-c2=a2+2ab+b2-c2.

(2)a4-1=(a2)2-1=(a2+1)•(a2-1).

五、课堂练习 教科书练习

六、作业 1、教科书习题

2、分解因式:x4-16 x3-4x 4x2-(y-z)2

3、若x2-y2=30,x-y=-5求x+y

相关推荐

热门文档

17 3544858