应用数据挖掘的实践经验【汇集10篇】
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“应用数据挖掘的实践经验【汇集10篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
应用数据挖掘的实践经验【第一篇】
摘要:网络经济就是依托网络技术发展的经济,主要特点就是信息,表现形式为信息产业和服务业。
网络经济还存在众多名称:“数字经济”、“信息经济”、“新经济”。
随着我国科学技术的发展,这种新型经济形式表现出强大的生命力,进一步加快了经济增长、经济结构、经济运行规则的转变。
工商管理部门作为国家管理经济、市场的有力工具,在建立和维护市场经济秩序中发挥着重要作用,由于网络经济形式的出现,工商管理部门也需顺应时代发展,而创新管理思路和管理方法,以促进这种新型经济的健康发展。
应用数据挖掘的实践经验【第二篇】
摘要:支持向量机(supportvectormachine,svm)是数据挖掘和机器学习中的一个很有效的工具。结合支持向量机在数据挖掘和机器学习中的应用,介绍了支持向量机的基本原理,发展方向及其研究热点。
关键词:支持向量机;数据挖掘;机器学习オ。
1svm的提出和基本思想。
支持向量机是vapnik等人提出的,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,已应用于手写体识别、三维目标识别、人脸识别、文本图像分类等实际问题中,性能优于已有的学习方法,表现出良好的学习能力。它是从线性可分情况下的线性分类面发展而来的,接着利用核函数很好的解决了非线性可分情况。
2支持向量机的几个发展。
(1)模糊支持向量机,引入样本对类别的隶属度函数,这样每个样本对于类别的影响是不同的,这种理论的应用提高了svm的抗噪声的能力,尤其适合在未能完全揭示输入样本特性的情况下。
(2)最小二乘支持向量机。这种方法是在提出,经过这几年的发展,已经应用要很多相关的领域。研究的问题已经推广到:对于大规模数据集的处理;处理数据的鲁棒性;参数调节和选择问题;训练和仿真。
(3)加权支持向量机(有偏样本的加权,有偏风险加权)。
(4)主动学习的支持向量机。主动学习在学习过程中可以根据学习进程,选择最有利于分类器性能的样本来进一步训练分类器,特能有效地减少评价样本的数量。
(5)粗糙集与支持向量机的结合。首先利用粗糙集理论对数据的属性进行约简,能在某种程度上减少支持向量机求解计算量。
(6)基于决策树的支持向量机。对于多类问题,采用二岔树将药分类的样本集构造出一系列的两类问题,每个两类构造一个svm。
(7)分级聚类的支持向量机。基于分级聚类和决策树思想构建多类svm,使用分级聚类的方法,可以先把n-1个距离较近的类别结合起来,暂时看作一类,把剩下的一类作为单独的一类,用svm分类,分类后的下一步不再考虑这单独的一类,而只研究所合并的n-1类,再依次下去。
(8)算法上的提高。vapnik在1995年提出了一种称为“chunking”的块算法,即如果删除矩阵中对应lagrange乘数为0的行和列,将不会影响最终结果。osuna提出了一种分解算法,应用于人脸识别领域。joachims在将osuna提出的分解策略推广到解决大型svm学习的算法。platt于19提出了序贯最小优化每次的工作集中只有2个样本。
(9)核函数的构造和参数的选择理论研究。基于各个不同的应用领域,可以构造不同的核函数,能够或多或少的引入领域知识。现在核函数广泛应用的类型有:多项式逼近、贝叶斯分类器、径向机函数、多层感知器。参数的选择现在利用交叉验证的`方法来确认。
(10)支持向量机从两类问题向多类问题的推广。weston在1998年提出的多类算法为代表。在经典svm理论的基础上,直接在目标函数上进行改进,重新构造多值分类模型,建立k分类支持向量机。通过sv方法对新模型的目标函数进行优化,实现多值分类。
一对多(one-against-rest)――vapnik提出的,k类――k个分类器,第m个分类器将第m类与其余的类分开,也就是说将第m类重新标号为1,其他类标号为-1。完成这个过程需要计算k个二次规划,根据标号将每个样本分开,最后输出的是两类分类器输出为最大的那一类。不足:容易产生属于多类别的点(多个1)和没有被分类的点(标号均为-1)――不对,训练样本数据大,训练困难,推广误差无界。
层(数分类方法),是对一对一方法的改进,将k个分类合并为两个大类,每个大类里面再分成两个子类,如此下去,直到最基本的k个分类,这样形成不同的层次,每个层次都用svm来进行分类――1对r-1法,构建k-1个分类器,不存在拒绝分类区。
3主要研究热点。
从上面的发展中,我们可以总结出,目前支持向量机有着几方面的研究热点:核函数的构造和参数的选择;支持向量机从两类问题向多类问题的推广;更多的应用领域的推广;与目前其它机器学习方法的融合;与数据预处理(样本的重要度、属性的重要度、特征选择等)方法的结合。
参考文献。
[1]@张学工.统计学习理论的本质[m].北京:清华大学出版社,.
[2]@nellocristianini,johnshawe-taylor.支持向量机导论[m].北京:电子工业出版社,.
应用数据挖掘的实践经验【第三篇】
在软件开发信息管理过程中,经对数据挖掘技术科学合理应用,可为软件开发带来极有利的帮助,达到软件开发信息管理低成本、高质量、短工期的要求,消除软件开发信息管理期间存在的一系列问题。全面软件开发行业在时代发展新形势下,要与时俱进,大力进行改革创新,运用先进的科学技术不断优化数据挖掘技术研究。
开源软件,即源代码为开放的软件,此类软件现阶段大部分对用户是不收取费用的,也正是受此影响提升了开源软件控制管理难度,鉴于此,可应用数据挖掘技术来改善开源软件的资料。就好比,日本某高校学生推出了一个分布式数据挖掘系统,该系统一方面可对大型系统开展数据挖掘,一方面能够一系列开源软件开展数据挖掘。
软件项目管理中数据挖掘多表现于两个方面,一方面为对组织关系开展的挖掘,一方面为对版本控制信息开展的挖掘。软件项目管理作为一个系统工程,对组织关系开展挖掘主要是指对人力资源开展协调分配。就好比,一个庞大工程可能同时有千百余人参与,在工程运行期间人员相互会出现频繁的信息数据交互,经对数据挖掘技术的有效应用,能够对人员组织关系展开合理划分,积极促进软件项目管理的有序开展。同时,数据挖掘技术还可应用于挖掘版本控制信息,能够有效缩减系统维护成本,改善软件项目管理水平。
在数据库中收集有价值的代码、构件,现阶段,较为常用的手段包括经由关键词开展索引、经由记录输入-输出关系索引以及以建立交互关系图为基础的方法等,我们常常使用的百度、搜狗等搜索引擎均能够开展数据检索。
4结束语。
总而言之,在软件开发信息管理过程中,经对数据挖掘技术科学合理应用,可为软件开发带来极有利的帮助,达到软件开发信息管理低成本、高质量、短工期的要求,消除软件开发信息管理期间存在的一系列问题。基于此,相关人员务必要明确认识软件开发信息管理数据挖掘面临的挑战,不断钻研研究、总结经验,积极促进软件开发信息管理有序开展。
应用数据挖掘的实践经验【第四篇】
关于数据挖掘的应用,最近还有这样一个真实案例在数据挖掘和营销挖掘领域广为流传。
美国一名男子闯入他家附近的一家美国零售连锁超市target店铺(美国第三大零售商塔吉特)进行抗议:“你们竟然给我17岁的女儿发婴儿尿片和童车的优惠券。”店铺经理立刻向来者承认错误,但是其实该经理并不知道这一行为是总公司运行数据挖掘的结果。如图所示。一个月后,这位父亲来道歉,因为这时他才知道他的女儿的确怀孕了。target比这位父亲知道他女儿怀孕的时间足足早了一个月。
target能够通过分析女性客户购买记录,“猜出”哪些是孕妇。他们从target的数据仓库中挖掘出25项与怀孕高度相关的商品,制作“怀孕预测”指数。比如他们发现女性会在怀孕四个月左右,大量购买无香味乳液。以此为依据推算出预产期后,就抢先一步将孕妇装、婴儿床等折扣券寄给客户来吸引客户购买。
如果不是在拥有海量的用户交易数据基础上实施数据挖掘,target不可能做到如此精准的营销。
应用数据挖掘的实践经验【第五篇】
网络舆情是在各种事件的刺激下,网民通过互联网来表达和传播的各种不同情感、认知、态度和行为交错的总和[7]。随着互联网技术的飞速发展,网民的公共空间得到了极大的拓展,网络平台为网民提供发表意见和参与议事的捷径。
网络舆情危机是指社会事件发生出现在网络上,在短时间内产生大量信息,网民的个人意见在众多观点的碰撞下,最终形成占据主导性的意见,同时就可能使得事件变得更为敏感、甚至尖锐。
网络舆情危机的管理需职能部门建立敏捷的反应机制和推出较为妥善的解决策略。而在计算机技术呈现蓬勃发展的时代背景下,相关部门对网络舆情的积极应对就需要借助信息化管理。本次研究即对数据挖掘技术在网络舆情危机管理中的应用展开如下的分析与阐述。
(1)对网络舆情危机应对数据进行分析。在整个网络舆情应对事例系统中,基础性的关键部分就是舆情危机应对数据。因而,就可以使用数据挖掘技术,对舆情应对数据中危机的发生频率和种类的'规律进行统计和分析,从这些网络舆情危机的种类中提取得到危机发生频率最高的事件,在此基础上,就可根据这些统计结果与数据申报专项研究课题,进而同步增加该方面研究投入。
(2)对整体危机管理水平进行评价。在网络舆情危机管理系统中,可以利用数据挖掘技术对整体的危机管理水平实现综合性的预估和评价。总地说来,数据挖掘技术可以对已有的网络舆情危机应对处理信息进行分析和筛选,进而对该类危机处理质量、服务质量、网络舆情危机系统的使用情况等形成全局性的认知和了解,如此将不仅有利于改善现实危机应对水平,也有助于对未来的非常规突发情况在第一时间调动应急部署,做出合理规划。
(3)对管理效果进行分析。在网络舆情危机管理中,应该对常见的同类网络舆情危机的管理效果进行分析。以在网络舆情危机中职能部门直接或间接地参与到事件数据为依据,通过应用数据挖掘技术可以对危机处理过的具体情况、应对危机时采用的方法、危机处理后的结果引入过滤、分析等优化集成环节,从而制定出针对该类网络舆情突发事件的处理方案,为未来危机发生时的迅捷应对增加了可供参照的应用范例。
研究可知,职能部门可以通过应用数据挖掘技术,对影响其应对舆情危机数量的相关因素进行分析和归类提取描述,有助于该部门及时对现有工作人员按需实施及时变动与合理调整。
职能部门关于应对的工作量指标与该部门应对危机的工作质量有着直接的关系,而其关注和参与的危机数量则能直接体现该部门工作量的执行情况。在对这些数据进行统计和分析时,部门工作人员还应注意灵活运用数据挖掘技术辨识各类舆情危机数量的增减态势,从而为政府未来危机的爆发预测积累第一手的丰富素材与依据。
对网络舆情进行分组聚类方面的应用。
在应对网络舆情危机系统数据的挖掘中,比较常见的就是聚类分析技术。在实际的工作中,根据职能部门的特点和工作要求,将各类网络舆情危机数据信息建立起不同的特征独具的模型仓库,对舆情危机事件信息进行深度挖掘。在此过程中,可以将舆情危机信息作为基础,以舆情危机事件的爆发时间作为标识,使用数据挖掘技术在各类网络舆情事件全程涌现的描述性信息、关键词汇等因子中找出不同舆情危机时间之间的联系,再依据这些联系节点就能得出不同分组事件的舆情信息和处理结果。至此,可以把这些规律和舆情事件进行有机紧密结合,再对舆情危机的运用方法施以适当调整,即可达到良好的危机应对效果。
在提供个性化服务中的应用。
在所有的服务行业中,个性化服务是最高的标准,同时也是公共服务发展的终极目标[8]。网络舆情的爆发往往是信息的不对称导致的事态走向趋于严峻。职能部门对网络舆情危机的应对处理需要在专门的系统平台上向网民做出透明化公示。网民希望在最短时间里找到对自己有价值的信息,由部门定制的个性化服务即能从根本上解决这一问题。个性化服务的核心是培养网民的个人习惯,利用科学的方式引导网民的使用习惯朝着科学方向转变,在大数据技术下就能达到这一预设性目标。
数据挖据技术在设计衍生个性化服务时主要体现在2个方面,研究要点可阐析如下。
(1)数据挖掘技术可以满足职能部门工作人员和网民的实际需求,助其及时找到对自己有价值的信息。
(2)职能部门可以根据舆情危机事件和网民的实际情况,运用大数据技术提供具有针对性、多样性的信息和服务。
实际上,前者主要强调的是部门工作人员和网民需发挥主观能动性,而后者则着重强调了智慧政府的建设。在一定程度上,智慧政府即是未来社会的潮流发展趋势。
3结束语。
随着信息化技术的快速发展,数据挖掘技术的应用领域日趋广泛。数据挖掘技术在职能部门舆情危机应对的信息化和决策支持中具有重要作用。通过运用数据挖掘技术可以最大限度地发挥数字化优势,对舆情危机的数据信息进行深入的挖掘和分析,进而提高社会整体的网络舆情危机应对能力。
参考文献。
[2]vosoughis,royd,aralspreadoftrueandfalsenewsonline[j].socialscience,,359(6380):1146-1151.
应用数据挖掘的实践经验【第六篇】
我国提出用十年时间基本实现智游的目标[3]过去几年国家旅游局的相关动作均为了实现这一目标。但是在借助大数据推动智游的可持续性发展中大数据所产生的价值却亟待提高原因之一就是在收集、储存了大量数据后对它们深入挖掘不够没有发掘出数据更多的价值。
信息化建设。
智游的发展离不开移动网络、物联网、云平台。随着大数据的不断发展,国内许多景区已经实现wi-fi覆盖,部分景区也已实现人与人、人与物、人与景点之间的实时互动,多省市已建有旅游产业监测平台或旅游大数据中心以及数据可视化平台,从中进行数据统计、行为分析、监控预警、服务质量监督等。通过这些平台,已基本能掌握跟游客和景点相关的数据,可以实现更好旅游监控、产业宏观监控,对该地的旅游管理和推广都能发挥重要作用。
但从智慧化的发展来看,我国的信息化建设还需加强。虽然通讯网络已基本能保证,但是大部分景区还无法实现对景区全面、透彻、及时的感知,更为困难的是对平台的建设。在数据共享平台的建设上,除了必备的硬件设施,大数据实验平台还涉及大量部门,如政府管理部门、气象部门、交通、电子商务、旅行社、旅游网站等。如此多的部门相关联,要想建立一个完整全面的大数据实验平台,难度可想而知。
大数据挖掘方法。
大数据时代缺的不是数据,而是方法。大数据在旅游行业的应用前景非常广阔,但是面对大量的数据,不懂如何收集有用的数据、不懂如何对数据进行挖掘和利用,那么“大数据”犹如矿山之中的废石。旅游行业所涉及的结构化与非结构化数据,通过云计算技术,对数据的收集、存储都较为容易,但对数据的挖掘分析则还在不断探索中。大数据的挖掘常用的方法有关联分析,相似度分析,距离分析,聚类分析等等,这些方法从不同的角度对数据进行挖掘。其中,相关性分析方法通过关联多个数据来源,挖掘数据价值。但针对旅游数据,采用这些方法挖掘数据的价值信息,难度也很大,因为旅游数据中冗余数据很多,数据存在形式很复杂。在旅游非结构化数据中,一张图片、一个天气变化、一次舆情评价等都将会对游客的.旅行计划带来影响。对这些数据完全挖掘分析,对游客“行前、行中、行后”大数据的实时性挖掘都是很大的挑战。
数据安全。
数据安全事件屡见不鲜伴着大数据而来的数据安全问题日益凸显出来。在大数据时代无处不在的数据收集技术使我们的个人信息在所关联的数据中心留下痕迹如何保证这些信息被合法合理使用让数据“可用不可见”[4]这是亟待解决的问题。同时在大数据资源的开放性和共享性下个人隐私和公民权益受到严重威胁。这一矛盾的存在使数据共享程度与数据挖掘程度成反比。此外经过大数据技术的分析、挖掘个人隐私更易被发现和暴露从而可能引发一系列社会问题。
大数据背景下的旅游数据当然也避免不了数据的安全问题。如果游客“吃、住、行、游、娱、购”的数据被放入数据库,被完全共享、挖掘、分析,那游客的人身财产安全将会受到严重影响,最终降低旅游体验。所以,数据的安全管理是进行大数据挖掘的前提。
大数据人才。
大数据背景下的智游离不开人才的创新活动及技术支持,然而与专业相衔接的大数据人才培养未能及时跟上行业需求,加之创新型人才的外流,以及数据统计未来3~5年大数据行业将面临全球性的人才荒,国内智游的构建还缺乏大量人才。
4解决思路。
在信息化建设上,加大政府投入,加强基础设施建设,整合结构化数据,抓取非结构化数据,打通各数据壁垒,建设旅游大数据实验平台;在挖掘方法上,对旅游大数据实时性数据的挖掘应该被放在重要位置;在数据安全上,从加强大数据安全立法、监管执法及强化技术手段建设等几个方面着手,提升大数据环境下数据安全保护水平。加强人才的培养与引进,加强产学研合作,培养智游大数据人才。
参考文献。
应用数据挖掘的实践经验【第七篇】
摘要:数据挖掘是当前数据库和信息决策领域的最前沿研究方向之一。
该文从知识发现和数据挖掘的概念出发,总结了数据挖掘常采用的技术方法,同时对数据挖掘的应用及发展进行了阐述。
该文以一个淘宝网行业的数据挖掘案例探讨了数据挖掘在网络经济下工商的应用;从技术和商业需求两个方面分别研究了数据挖掘商务应用的可行性,并指出因竞争战略的细化导致了对数据挖掘的商业需求。
关键词:数据挖掘;网络经济;序列模式。
随着数据库和网络等技术的迅速发展,我们产生和收集数据的能力已经迅速提高,大量的数据储存在数据库和数据仓库中,我们已被淹没在数据和信息的汪洋大海中。
这项以数据库技术、网络技术、统计分析、人工智能等为依托的综合性运用技术的出现有其必然性和可行性。
人们需要有新的、更有效的手段地各种大量数据进行挖掘以发挥其潜能,数据挖掘正是在这样的应用需求环境下产生并迅速发展起来的,它的出现为自动和智能地把海量的数据转化为有用的信息和知识提供了手段。
1网络经济。
网络经济,一种建立在计算机网络基础之上,以现代信息技术为核心的新的经济形态。
它以信息为基础,以计算机网络为依托,以生产、分配、交换和消费网络产品为主要内容,以高科技为支持,以知识和技术创新为灵魂。
它不仅是指以计算机为核心的信息技术产业的兴起和快速增长,也包括以现代计算机技术为基础的整个高新技术产业的崛起和迅猛发展,更包括由于高新技术的推广和运用所引起的传统产业、传统经济部门的深刻的革命性变化和飞跃性发展。
它实际上是一种在传统经济基础上产生的、经过以计算机为核心的现代信息技术提升的高级经济发展形态。
电子商务行业概况。
随着电子商务行业不断发展,新的供应商仍在进人市场与传统企业竞争。
电子商务行业促使杂货、药品、玩具零售商提供更低的价格和更全的商品。
电子商务正以低成本、高效率、覆盖广、协调性强、透明度高等一系列明显的交易优势席卷经济的各个层面。
中国移动互联网市场规模达亿元,同比增长%,移动电子商务的飞速发展正是中国移动互联网市场快速增长的主要推动力。
20,移动电商在移动互联网市场中的占比已接近三成,预计在末可以达到57%以上。
传统互联网电商企业在发展到一定规模后,有足够的经验和资本向移动终端转移,是移动电商快速增长的主要原因。
数据挖掘分析过程。
上面面用一个针对淘宝网滁州店铺采集的样本数据,进行挖掘的例子来说明数据挖掘的具体应用。
表1给出了数据源的部分字段格式。
表2、表3给出了经过整理和转换后的适用于挖掘工具的数据样本。
在本案例中,我们自行编写挖掘工具。
限于篇幅,具体数据挖掘过程省略。
从上面电子商务行业数据挖掘后分析可以得出:。
电子商务销售的主体:我们找到进行网络销售的主体人(店铺)及相关个人店铺信息;。
监管范围的扩展:传统工商监管只对实体店铺进行监管,通过对网络的市场监管,可以扩大工商管理监管范围,更加规范的市场。
针对网络经济形态下的数据挖掘,我们主要采用以下三种方式进行数据挖掘:。
关联分析。
利用关联规则进行数据挖掘。
在数据挖掘研究领域,对于关联分析的研究开展得比较深入,人们提出了多种关联规则的挖掘算法,如apriori、stem、ais、dhp等算法。
关联分析的目的是挖掘隐藏在数据间的相互关系,它能发现数据库中形如“90%的顾客在一次购买活动中购买商品a的同时购买商品b”之类的知识。
关联分析就是生成所有具有用户指定的最小置信度和最小支持度的关联规则。
分类分析。
设有一个数据库和一组具有不同特征的类别(标记),该数据库中的每一个记录都赋予一个类别的标记,这样的数据库称为示例数据库或训练集。
分类分析就是通过分析示例数据库中的数据,为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,然后用这个分类规则对其它数据库中的记录进行分类。
序列模式分析。
序列模式分析和关联分析法相似,其目的也是为了采掘出数据之间的联系,但序列模式分析的侧重点在于分析数据间的前后(因果)关系。
运用序列模式分析销售记录,零售商则可以发现客户潜在的购物模式,例如客户在购买微波炉前常购买何种商品。
数据挖掘与信息过滤技术的结合。
网络的迅速发展导致了“信息过载”、“信息超载”现象,利用网络数据挖掘中得到的数据进行信息过滤机制就是为了克服上述现象,减少用户在获得信息过程中的负担,同时向用户提供数量适宜、质量优良的信息应运而生的。
比如在网络内容挖掘之前对网络文档中包含的信息进行过滤、筛选、分类和归档等操作,使网络内容挖掘所要处理的数据量得以减少,使输入数据的质量、网络内容挖掘的信息挖掘速度及精确度和用户所得信息的时效性得以提高。
1)确定应用领域:包括此领域的基本知识和目标。
2)建立目标数据集:选择一个数据集或在多数据集的子集上聚焦。
3)数据预处理:在大数据集中,根据需求,利用数据净化和整合技术,选择与任务相关数据,在不降低其准确度的状况下减少处理数据量。
4)数据转换:找到数据的特征进行编码,减少有效变量的数目。
5)数据挖掘:根据数据和所要发现知识的种类来确定相应的挖掘算法。
6)数据评价:将挖掘出的知识和数据以各种可视化方式显示,并将其以图形、文本等方式存储在库中,以便对它们进一步挖掘,直至满意为止。
7)实施和应用:利用数据挖掘技术所建立模型在实际项目中的应用,包括数据库的构建,个性化用户服务、基于知识的企业信息管理(mis)、企业目标管理、决策支持等等。
以上数据时网络经济形态下,在工商管理部分的应用,实际的工商管理目标是为工商管理与决策提供服务,未来的数据挖掘将会形成标准的数据挖掘语言或其他方面的标准化工作的数据挖掘系统。
数据挖掘能发现网络中隐含的有价值的信息和知识,从而提高标引、自动摘要、自动分类和自动聚类等的准确率;能促进用户兴趣模型的构建,从而为用户提供更好的个性化信息,难以满足网络信息用户的动态需求。
在网络信息检索的实际应用中,往往不是单一地运用数据挖掘技术,数据挖掘需和其他相关技术结合,才能发挥出更大的效用。
参考文献:。
[5]苗杰,倪波.面向集成竞争情报系统的数据挖掘应用研究[j].情报学报,2001(8):443—450.
应用数据挖掘的实践经验【第八篇】
就算没去过纽约,也应该都听说过拥有百年历史的纽约地铁,又脏又臭又阴暗,但是纽约客以及自世界各地来的旅客又都离不开地铁,每天550万人搭乘,想必每一座地铁、每一层阶梯、每一列车厢,到处沾满人类陈年积淀的汗渍与污垢。不过,真实情况可能要你大吃一惊,不是没那么脏,而是比我们想象得更奇幻。
康乃尔大学weill医学院的研究者们,花了18个月的时间执行了一项大数据项目。他们用鉴识科学常用的棉花棒,在486个纽约地铁站搜集目标样本,车厢门、楼梯扶手、座椅、灯杆、垃圾桶都不放过,最后总共发现1万5千多种微生物,将近一半的样本是人类未知的有机生物,27%是活性并俱有抗药性的细菌,虽然所有细菌仅有12%与疾病相关,还发现了三个与腺鼠疫、炭疽相关样本,但幸而这些样本都没有活性。而与人类的基因组相匹配的只占了不到2%。
关于地铁细菌的研究,不只是有趣,也不只是满足了科学家的好奇心,研究者们将把这些物种分门别类,未来就能把它们当作对照样本,确定某些疾病、甚至也可预测未来若恐怖份子把某些细菌当做生物武器攻击的物质,是否已经扩散。
文档为doc格式。
应用数据挖掘的实践经验【第九篇】
近些年来,已经有越来越多的企业把通信、网络技术和计算机应用引入企业的日常管理工作和业务开发处理当中,企业的各类信息化程度也在不断提高。现代科技信息技术的广泛应用已经显著的提高了企业的工作效率和经济效益。但是,在使用信息技术给企业带来的方便、快捷的同时,也不断的出现了新的问题和需求。企业经过多年积累了大量的历史数据,这些数据对企业当前的日常经营活动几乎没有任何的使用价值,成了留之无用弃之可惜的累赘。而且储藏这些历史数据会对企业造成很大的困难和费用开销。为此数据挖掘技术应用在网络营销中势在必行,全面细致的分析数据库资源并从中提取有价值的信息来对商业决策进行支持,从而来控制运营成本、提高经济效益。本文将从网络营销中数据挖掘技术的几个应用进行探讨和分析。
1客户关系管理。
客户关系管理在网络营销,商业竞争是一家以客户为中心的竞技状态的客户,留住客户,扩大客户基础,建立密切的客户关系,客户需求分析和创造客户需求等,是非常关键的营销问题。客户关系管理,营销和信息技术领域是一个新概念,这在90年代初,软件产品在上世纪90年代后期出现的诞生。目前,在国内和国外的此类产品的研究和发展阶段。然而,继续与数据仓库和数据挖掘技术的进步和发展,客户关系管理,也是对实际应用阶段。crm的目标是管理者与客户的互动,提升客户价值,提高客户满意度,提高客户的忠诚度,还发现,市场营销和销售渠道,然后寻找新客户,提高客户的利润贡献率的最终目的是为了推动社会和经济效益。客户关系管理的目的,应用是改善企业与客户的关系,它是企业和服务本质管理和协调,以满足客户的需求,企业政策支持这项工作,并联系客户服务加强管理,提高客户满意度和品牌忠诚度。
然而,数据挖掘可以应用到很多方面的crm和不同阶段,包括以下内容:
(1)“一对一”营销的内部工作人员认识到,客户是在这个领域的企业,而不是贸易发展生存的关键。与每一个客户接触的过程,也是了解客户的进程,而且也让客户了解业务流程。
(2)企业与客户之间的销售应该是一种商业关系不断向前发展。客户和营销公司成立这种方式,而且有许多方法可以使这种与客户的关系,往往以改善包括:延长时间,客户关系和维护客户关系,以进一步加强相互交往过程中,公司可以在对方取得联系更多的利润。
(3)客户对客户盈利能力分析。我们的客户盈利能力是非常不同的,如果你不明白客户盈利能力,很难制定有效的营销策略,以获取最有价值的客户,或进一步提高客户的忠诚度的价值。数据挖掘技术可以用来预测客户在市场条件变化不同的盈利能力。它可以找到所有这些行为和使用模型来预测客户行为模式的客户交易盈利水平或新客户找到高利润。
(4)在所有部门维护客户关系的竞争日趋激烈,企业获得新客户的成本上升,因此,保持现有客户的关系变得越来越重要。对于企业客户可分为三大类:没有价值或者低价值的客户,不容易失去宝贵的客户,并不断寻找更多的优惠,更有价值的服务给客户。前两个类型的`客户,客户关系管理,现代化,然而,最具潜力的市场活动,是第三个层次的用户,而且还特别需求和营销工具,以保护客户,可以减缓企业经营成本,而且还获得了宝贵的客户。数据挖掘还可以发现,由于客户流失,该公司能够满足这些客户的需要,采取适当措施,保持销售。
(5)客户访问企业业务系统资源,包括能够获得新客户的关键指标。为了提供这些新的资源,包括企业搜索客户谁不知道该产品的客户,可能是竞争对手,服务客户。这些细分客户,潜在客户可以帮助企业完成检查。
2企业经营定位。
通过挖掘客户的有关数据,可以对客户进行分类,找出其相同点和不同点,以便为客户提供个性化的产品和服务,使企业和客户之间能够通过网络进行有效的沟通和信息交流。例如,关联分析,客户在购买某种商品时,有可能会连带着购买其他的相关产品,这样购买的某种商品和连带购买的其他相关产品之间就存在着某种关联,企业可以针对这种关联进行分析,分析出规律,已制定有效的营销策略来长效的起到吸引客户连带消费,购买其他产品的营销策略。它能够智能化地从大量的数据中提取出有用的信息和知识,为企业的管理人员提供决策支持。数据挖掘技术使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。
客户群体的划分也会用到数据挖掘,没有基于数据挖掘的客户划分,就没有真正的差异化、个性化营销,就没有现代营销的根本。做为企业的领导者,不管你的企业是卖产品的还是卖服务,第一个应该准确把握的商业问题就是你的目标客户群体,他们是谁,有什么特点和行为模式,有那些独特的喜好可以作为营销的突破口,有多大的多长久的赢利价值。这些问题是你整个商业运做的核心和基础,不了解你的客户,下面的路就根本别指望能走下去了。数据挖掘营销应用中的客户群体划分可以科学有效的解决这个问题,也能给企业找到一个合理的营销定位。
3客户信用风险控制。
数据挖掘技术在90年代开始应用于信用评估与风险分析中。企业在进行网络营销的过程中会受到各种各样的来自买方的信用风险的威胁,随着市场竞争的加剧,贸易信用已经成为企业成功开发客户和加强客户关系的重要条件。客户信用管理主要是搜集储存客户信息,因为客户既是企业最大的财富来源,也是风险的主要来源。为了让企业在这方面更少的受到威胁,可以利用数据挖掘技术发现企业经常面临的诈骗行为或延付货款行为,进而进行回避。同时尽可能把客户信用风险控制在交易发生之前是成功信用管理的根本。因此,充分获取客户的详细资料并做出安全的决策非常重要。
(3)数据挖掘技术也可以适应各种形式的数据,数据挖掘可以是连续的数据,离散数据,而其他形式的数据处理,以便在更大的灵活性,在选择指标时,更加符合客观实际的信用风险模型。
为现代信用风险管理方法有两个:第一是所谓的指数法,其基础是信用相关业务的某些特性来企业信用评估;第二类是所谓的结构化方法,根据历史数据和市场数据模拟在企业资产价值变化的动态持续的过程,然后确定其企业信用的位置。
网络营销作为适应网络经济时代的网络虚拟市场的新营销理论,是市场营销理念在新时期的发展和应用。它能够智能化地从大量的数据中提取出有用的信息和知识,为企业的管理人员提供决策支持。数据挖掘技术使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。
1.维护原有客户,挖掘潜在新客户。
网络营销中销售商可以通过客户的访问记录来挖掘出客户的潜在信息,跟据客户的兴趣与需求向客户有针对性的做个性化的推荐,制定出客户满意的产品服务。在做好维护原有老客户的基础上,通过对数据的挖掘,利用分类技术,也可以寻找出潜在的客户,通过对web日志的挖掘,可以对已经存在的访问者进行分类,根据这种精细的分类,还可以找到潜在的新客户。
2.制定营销策略,优化促销活动。
对于保留的商品访问记录和销售记录进行挖掘,可以发现客户的访问规律,了解客户消费的生命周期,起伏规律,结合市场形势的变化,针对不同的商品和客户群制定不同的营销策略,保证促销活动针对客户群有的放矢,收到意想不到的效果。
3.降低运营成本,提高竞争力。
网络营销的管理者可以通过数据挖掘发现市场反馈的可靠信息,预测客户未来的购买行为,有针对性的进行营销活动,还可以根据产品访问者的浏览习惯来觉定产品广告的位置,使广告有针对性的起到宣传的效果。从而提高广告的投资回报率,从而能降低运营成本,提高且的核心竞争力。
4.对客户进行个性化推荐。
根据客户采矿活动对网络规则,有针对性的网络营销平台,提供“个性化”服务。个性化服务是在服务策略和服务内容的不同客户的不同,其本质是客户为中心的web服务的需求。它通过收集和分析客户资料,以了解客户的利益和购买行为,然后采取主动,以达到建议的服务。
5.完善网络营销网站的设计。
参考文献。
1冯英健著,《网络营销基础与实践》,清华大学出版社,1月第1版。
2.,,/mitpress,menlopark,ca.:。
应用数据挖掘的实践经验【第十篇】
摘要:在本科高年级学生中开设符合学术研究和工业应用热点的进阶课程是十分必要的。以数据挖掘课程为例,本科高年级学生了解并掌握数据挖掘的相关技术,对于其今后的工作、学习不无裨益。着重阐述数据挖掘等进阶课程在本科高年级学生中的教学方法,基于本科高年级学生的实际情况,以及进阶课程的知识体系特点,提出有针对性的教学方法参考,从而提高进阶课程的教学效果。
学生在本科高年级学生中开设数据挖掘等进阶课程是十分必要的,以大数据、数据挖掘为例,其相关技术不仅是当前学术界的研究热点,也是各家企事业单位招聘中重要岗位的要求之一。对于即将攻读硕士或博士学位的学生,对于即将走上工作岗位的学生,了解并掌握一些大数据相关技术,尤其是数据挖掘技术,都是不无裨益的。在目前本科教学中,对于数据挖掘等课程的教学,由于前序课程的要求,往往是放在本科四年级进行。如何激发本科四年级学生在考研,找工作等繁杂事务中的学习兴趣,从而更好地掌握数据挖掘的相关技术是本课程面临的主要挑战,也是所有本科进阶课程所面临的难题之一。
1数据挖掘等进阶课程所面临的问题。
进阶课程知识体系的综合性。
进阶课程由于其理论与技术的先进性,往往是学术研究的前沿,工业应用的热点,是综合多方面知识的课程。以数据挖掘课程为例,其中包括数据库、机器学习、模式识别、统计、可视化、高性能技术,算法等多方面的知识内容。虽然学生在前期的本科学习中已经掌握了部分相关内容,如数据库、统计、算法等,但对于其他内容如机器学习、人工智能、模式识别、可视化等,有的是与数据挖掘课程同时开设的进阶课程,有的已经是研究生的教学内容。对于进阶课程繁杂的知识体系,应该如何把握广度和深度的关系尤为重要。
进阶课程的教学的目的要求。
进阶课程的知识体系的综合性体现在知识点过多、技术特征复杂。从教学效益的角度出发,进阶课程的教学目的是在有限的课时内最大化学生的知识收获。从教学结果的可测度出发,进阶课程的教学需要能够有效验证学生掌握重点知识的.学习成果。本科高年级学生的实际情况本科高年级学生需要处理考研复习,找工作等繁杂事务,往往对于剩余本科阶段的学习不重视,存在得过且过的心态。进阶课程往往是专业选修课程,部分学分已经修满的学生往往放弃这部分课程的学习,一来没有时间,二来怕拖累学分。
2数据挖掘等进阶课程的具体教学方法。
进阶课程的教学理念是在有限的课时内,尽可能地提高课程的广度,增加介绍性内容,在授课中着重讲解1~2个关键技术,如在数据挖掘课程中,着重讲解分类中的决策树算法,聚类中的k-means算法等复杂度一般,应用广泛的重要知识点,并利用实践来检验学习成果。
进阶课程的课堂教学。
数据挖掘等进阶课程所涉及的知识点众多,在课堂上则采用演示和讲授相结合的方法,对大部分知识点做广度介绍,而对需要重点掌握知识点具体讲授,结合实践案例及板书。在介绍工业实践案例的过程中,对于具体数据挖掘任务的来龙去脉解释清楚,尤其是对于问题的归纳,数据的处理,算法的选择等步骤,并在不同的知识点的教学中重复介绍和总结数据挖掘的一般性流程,可以加深学生对于数据挖掘的深入理解。对于一些需要记忆的知识点,在课堂上采用随机问答的方式,必要的时候可以在每堂课的开始重复提问,提高学习的效果。
进阶课程的课后教学。
对于由于时间限制无法在课上深入讨论的知识点,只能依靠学生在课后自学掌握。本科高年级学生的课后自学的动力不像低年级学生那么充足,可以布置需要动手实践并涵盖相关知识点的课后实践,但尽量降低作业的工程量。鼓励学生利用开源软件和框架,基于提供的数据集,实际解决一些简单的数据挖掘任务,让学生掌握相关算法技术的使用,并对算法有一定的了解。利用学院与大数据相关企业建立的合作关系,在课后通过参观,了解大数据技术在当前企业实践中是如何应用的,激发学生的学习兴趣。
进阶课程的教学效果考察进阶课程的考察不宜采取考试的形式,可以采用大作业的形式。从具体的数据挖掘实践中检验教学的成果,力求是学生在上完本课程后可以解决一些简单的数据挖掘任务,将较复杂的数据挖掘技术的学习留给学生自己。
3结语。
数据挖掘是来源于实践的科学,学习完本课程的学生需要真正理解,掌握相关的数据挖掘技术,并能够在实际数据挖掘任务中应用相关算法解决问题。这也对教师的教学水平提出了挑战,并直接与教师的科研水平相关。在具体的教学过程中,发现往往是在讲授实际科研中遇到的问题时,学生的兴趣较大,对于书本上的例子则反映一般。进阶课程在注重教学方法的基础上,对于教师的科研水平提出了新的要求,这也是对于教师科研的反哺,使教学过程变成了教学相长的过程。
参考文献:
[1]孙宇,梁俊斌,钟淑瑛.面向工程的《数据挖掘》课程教学方法探讨[j].现代计算机,(13).
[2]蒋盛益,李霞,郑琪.研究性学习和研究性教学的实证研究———以数据挖掘课程为例[j].计算机教育,2014(24).
[3]张晓芳,王芬,黄晓.国内外大数据课程体系与专业建设调查研究[c].2ndinternationalconferenceoneducation,managementandsocialscience(icemss2014),2014.
[4]郝洁.《无线传感器网络》课程特点、挑战和解决方案[j].现代计算机,(35).
[5]王永红.计算机类专业剖析中课程分析探讨[j].现代计算机,(04).