数据挖掘师的技术要求通用10篇
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“数据挖掘师的技术要求通用10篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
数据挖掘师的技术要求【第一篇】
论文摘要:目前计算机web数据挖掘技术被广泛应用于电子商务活动,它是随着网络技术和数据库技术的快速发展而出现的一种新技术,已成为现代电子商务企业获取市场信息极为重要的工具。介绍了web数据挖掘的含义、特征及类别,重点探究了计算机web数据挖掘技术在电子商务中的几种典型应用。
论文关键词:数据挖掘;电子商务;web数据挖掘。
1引言。
当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于internet的电子商务快速发展,使现代企业积累了超多的数据,这些数据不仅仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到超多的数据。访问客户带给更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,web数据挖掘技术应运而生。它是一种能够从网上获取超多数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户带给动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。
计算机web数据挖掘的由来。
计算机web数据挖掘是一个在web资源上将对自己有用的数据信息进行筛选的过程。web数据挖掘是把传统的数据挖掘思想和方法移植到web应用中,即从现有的web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机web数据挖掘能够在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。
计算机web数据挖掘含义及特征。
(1)web数据挖掘的含义。
web数据挖掘是指数据挖掘技术在web环境下的应用,是一项数据挖掘技术与术相结合产生的新技术,综合运用到了计算机语言、internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是透过充分利用网络(internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等资料,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。
(2)web数据挖掘的特点。
计算机web数据挖掘技术具有以下特点:一是用户不用带给主观的评价信息;二是用户“访问模式动态获取”不会过时;三是能够处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,web是一个巨大、分布广泛、全球性的信息服务中心。
web数据挖掘技术共有三类:第一类是web使用记录挖掘。就是透过网络对web日志记录进行挖掘,查找用户访问web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是web资料挖掘。既是指从web文档中抽取知识的过程。第三类是web结构挖掘。就是透过对web上超多文档集合的资料进行小结、聚类、关联分析的方式,从web文档的组织结构和链接关系中预测相关信息和知识。
借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了超多的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(个性是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。
4计算机web数据挖掘在电子商务中的具体应用。
在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。
目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析必须时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得超多的数据,如此多的数据使web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的实用价值。因而,电子商务必将是未来web数据挖掘的主攻方向。web数据挖掘技术在电子商务中的应用主要包含以下几方面:
一是寻找潜在客户。电子商务活动中,企业的销售商能够利用分类技术在internet上找到潜在客户,透过挖掘web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。
二是留住访问客户。电子商务企业透过商务网站能够充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。
三是带给营销策略参考。透过web数据挖掘,电子商务企业销售商能够透过挖掘商品访问状况和销售状况,同时结合市场的变化状况,透过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等状况,为决策带给及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。
四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈状况,并以此作为改善网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。
5结语。
本文对web挖掘技术进行了综述,讲述了其在电子商务中广泛应用。能够看出,随着计算机技术和数据库技术快速发展,计算机web数据技术的应用将更加广泛,web数据挖掘也将成为十分重要的研究领域,研究前景巨大、好处深远。目前,我国的web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。
数据挖掘师的技术要求【第二篇】
我国引入战略管理会计理论的时间相对西方发达国家较晚,虽然现阶段对此理论的介绍和推广已经逐步落实,但由于未将此理论与我国商业银行实际发展状况紧密融合,所以在理论普及的过程中,并没有得到全面、准确的认识,致使现阶段我国商业银行并未确定战略管理会计运行的总体原则和完善的运行机制,甚至未实现对战略管理会计实施步骤的统一规划和安排,导致现阶段我国商业银行对于战略管理会计仍是“想怎么做,怎么做”,这对商业银行战略管理会计的应用和发展产生了滞碍。
(二)传统管理会计信息系统的阻碍。
现在部分商业银行仍采用传统管理会计信息系统,此种系统虽然能够满足商业银行内部运行预测、规划、控制、考核、决策等环节的信息需要,但战略管理会计不仅将眼光定向商业银行内部,信息更应该覆盖商业银行的竞争对手及顾客,这样才能够实现为战略决策提供信息支持,通过收集、分析战略对手的相关信息,判断竞争对手存在的优势及劣势,并根据商业银行自身实际情况进行战略调整,例如收集竞争对手的产品种类、市场营销活动等,但传统管理会计系统在此方面并不能体现优势。除此之外,商业银行使用的传统管理会计系统将分享的“数据挖掘师的技术要求通用10篇”,这导致原本不全面的信息被再次分割,信息分析、整理受限,阻碍了商业银行战略管理会计的实际应用。
(三)商业银行推行作业成本法存在实际困难。
成本作业法是一种成本核算的方法,即作业的过程中必然会消耗资源,将消耗的资源计入相应的'作业中,并确定产生消耗的成本动因,进而实现各作业成本向成本计算对象的分配,商业银行其资源即人事、场地、设备、事务等产生的花费,而作业即商业银行所提供的所有无形业务,如贷存款、财务会计等。由此可见商业银行的作业比较复杂,对其进行成本管理不论是分析资源动因还是划分作业成本库等都存在一定困难,特别是实践中会发生诸多与理论不完全相符的情况,造成作业成本法应用存在现实困难,例如商业银行在运营过程中间接成本会发生变动,而且造成变动的因素较多,这就为作业动因的确定制造了难度,如果将所有因素都视为作业动因就会使数据分享的“数据挖掘师的技术要求通用10篇”,造成不必要的人员物资浪费,而选取部分因素作为作业动因,可能造成产品成本信息不全,成本控制管理过于片面,所以现阶段成本作业法应用不灵活也阻碍了战略管理会计的应用。
(四)商业银行绩效评价存在问题。
商业银行在绩效标准方面,普遍以部门的角度进行员工绩效,而忽视组织层面的全局战略绩效,将平衡计分卡单纯应用于员工个人绩效方面,使其与组织的愿景、发展战略等相脱离,并未发挥预期的目的;在绩效指标方面,由于错误的将绩效以员工个人为对象,所以在确定绩效指标时只能以员工岗位职责为依托,指标往往不能显示关键问题;在评价体系方面,商业银行往往将眼光定位于银行内部的财务指标,而对外部竞争对手影响下的长远目标并未重视,所以评价体系并不全面。
(一)加强相关理论研究力度,逐步落实实践。
在理论方面首先应认识到我国战略管理会计理论研究相对落后;其次组织在会计学、管理学等与战略管理会计相关领域的权威专家成立专门的理论研究机构,实现组织理论研究,实现资源的最大化集合;再次对理论研究过程中存在的问题进行针对性的调查研究,提出解决办法,逐渐完善战略管理会计的理论体系;然后将国内外理论成果与我国具体国情和商业银行现阶段发展状况相融合,提出适合于商业银行应用的战略管理会计理论;最后将会计理论按照先试点后推行循序渐进的办法,应用于商业银行,使商业银行战略管理会计实践有充分的理论作指导。
(二)加强商业银行信息化建设力度。
信息是战略管理会计应用的基础,所以要加大其应用必须提升信息质量,实现全面、准确、及时收集、分析,考虑到传统管理会计系统的缺陷,所以建立针对竞争对手或顾客的外向型信息采集系统是现阶段信息化建设的关键,使商业银行战略决策可以有充足的外部信息做依据。另外成立专业的、权威的信息管理部门也是商业银行信息化建设的关键,这样可以有效避免信息不共享造成信息分割,阻碍商业银行战略决策;除此之外,要实现商业银行内部信息及外部信息的全面收集、科学分析,需要配备统一的计算机设备、统一信息机业务编码、实行统一的规章制度进行管理,并有统一的监督做支撑,由此可见,信息化建设不仅包括信息化系统建设,还包括信息化人才队伍的建设。
(三)根据实际情况应用作业成本法。
成本对象消耗作业,作业消耗资源是作业成本法不变的法则,可以看出通过作业成本法可以有效的提升成本准确度,但对于精确成本信息却并没有强制性的要求,所以在应用作业成本法时要注意成本对象的划分满足成本管理需要即可,并不是划分的越精准越好;在选取成本动因时要考虑其与间接成本相关性,通常相关性与计算准确性成正比,而且要从重要成本动机入手,这样可有效减少工作量,提升准确性;在进行成本分配时,主要考虑不能够直接对应成本对象的资源,这样会避免成本消耗被重复分配。
(四)加强平衡计分卡的实用性。
现阶段商业银行对平衡计分卡的应用普遍存在片面性的问题,为了扭转局面可以应用战略地图,通过战略地图将战略全方位的表述出来,使员工能够清晰的掌握商业银行的战略管理会计,由此可见战略地图是平衡计分卡的补充说明,是商业银行与员工的沟通媒介,从而使员工对个人的绩效有更加全面的认识。在确定绩效指标的过程中,可以监理部门的数据库,既存储部门历史运行数据,又存储竞争对手的相关指标,使指标确定更加具有针对性,而且与现实更贴近,这样不仅可以调动部门完成绩效的积极性,为商业银行创收,而且逐渐完善商业银行的评价体系,有利于其长期发展。
商业银行内部文化是商业银行长期运营过程中积累的精神财富,其对员工的思想行为具有很强的规范和引导作用,如果商业银行战略管理会计能够与其内部文化实现融合,就会为战略管理会计提供强大的动力,使员工自发的为战略管理会计的实现而做出努力,这样不仅能调动员工积极探索战略管理会计,而且可以实现商业银行各层员工的力量集中化,这为战略管理会计的应用创造了条件。
三、结论。
通过上述分析可以发现,现阶段国际金融环境的变化、国内金融体制的调整,都决定商业银行选择战略管理会计信息的必然性,只有这样才能在竞争激烈的银行金融环境中占有优势,才能满足战略决策的需要,达到战略管理的要求,但现阶段商业银行在实践战略管理会计的过程中仍然存在一些问题,需要有针对性的调整才能够得到完善,由此可见,商业银行应用战略管理会计并不是一蹴而就的,需要不断进行调整、完善,所以应以长远的眼光对待战略管理会计。
数据挖掘师的技术要求【第三篇】
近几年,中国经济建设的快速发展也带动了水利这些基础建设的发展,水利工程的增多正在逐渐改善我国的水利体系,如防洪、排水、灌溉、发电、养殖、旅游等,同时也反过来促进国民经济更加稳健发展。此外,为了能加快水利工程建设的发展,需要在水利工程管理上做出新的调整,以给水利工程注入新鲜血液,使水利工程起到更巨大的作用。因此,本文通过阐述数据挖掘技术的一些实施要点,探讨了数据挖掘技术在水利工程中的可行性和应用情况。
从另一个角度看,数据挖掘是资料收集、信息化采矿等。在水利工程项目管理过程中,数据挖掘技术的应用对水利工程项目的管理起着重要的推动作用。同时,数据挖掘是从数据库中发掘信息的过程(数据库知识发现)。数据挖掘的主要应用于大量的数据的采集整理,通过搜索算法来隐藏信息的过程。同样,在当今的信息时代,数据挖掘与计算机和先进的科学技术密切相关,通过计算机、互联网搜索、统计、分析、和其他方面的发展,可服务于许多行业和许多项目,本文借助于某市的水利工程,详细的阐述了其在现场数据管理中的应用情况。
数据挖掘是以现有的海量数据为重要资源,采用数据挖掘引擎技术,通过分析数据库中的数据,提取出最有价值的信息。
相关性分析。
通过数据源之间的相关性,找到所需的目标数据和扩展的信息,通过数据之间的联系找到规律,以便更好地分析数据的使用情况。
数据的分类与整合。
为了达到对更多的数据进行分类和整合的目的,对于没有规律和类型的标记数据按照相关的分类规则,以同一规则将信息汇总在一起,方便查找和应用数据,提高工作效率。
坚持预测分析。
在数据源中坚持预测分析,通过对重要数据进行建模,对信息进行综合有效的分析和预测,从而得出数据的发展趋势。让数据本身通过数据挖掘技术得出必要的结论。
把握概念。
通过了解数据源中所需信息的含义,总结主要特点,并给出概念描述,使数据具有高度的清晰度。
把握据偏差。
数据在输入和输出时不可避免地会出现差错,通过数据挖掘技术检测数据准确性是必要的,要找出参考值与结果之间是否存在差异,寻找一些潜在的信息,以减少数据误差。
部门专家观点之间存在差异。
在水利工程管理中使用了大量的数据,特别是采煤工艺在处理大空间问题上,加之水利部门普遍较大,且越来越多,需要与各部门协调配合工作。但不同的部门通常只负责沟通、交流的时间少,再加上数据分析技术落后于实践,各部门使用的仪器不一样,在数据点的分析上各专家持不同意见,这将阻碍数据处理,从而影响部门之间的合作,数据非常容易干扰,从而影响整个项目进展情况。
与gis系统联系不密切。
gis在水利工程信息系统中占有很大的比重,是水利工程信息系统中不可缺少的一部分,它的主要功能是产生大量的空间数据,空间数据的.计算、查询和分析,以及空间数据可视化是非常复杂的,单纯的依靠手工和一般信息系统是无法解决的,所以我们应该充分利用gis系统。然而,在现实中,由于在这方面缺乏专业人才,充分利用原有的数据和gis系统以进行有效结合,两者一起处理复杂的空间数据,现在还有很多事情要解决。
数据挖掘模型建立不够完善。
我国的水利工程虽然已经开展多年,但水利工程信息系统的应用还处于起步阶段。如今,数据挖掘技术模型可以帮助水利工程数据挖掘的人员可以预见在工程设计和施工过程中存在的差距等问题,确保水利工程项目按照原先设定好的方向进展。
4实例分析。
概况。
某水电站于1963开始建设,于1975年完工,其位于黄河中游的陕西境内,装机容量122万5000kw,是新中国成立以来为数不多的达到百万千瓦的大型水利水电项目。大坝主体结构为混凝土结构,大坝高度为147m,其电站总存储容量为57亿8000万m3。其水利项目主要管理内容包括水库管理、水闸管理、堤防管理、引水工程管理、水利工程管理等。
数据模型主要功能包括水利工程防洪、除涝、灌溉、运输、发电、水产养殖等,电站周边区域的社会经济和农业发展受其影响尤为巨大。在过去的发展过程中,某市的水利工程在管理和决策中,这些都是比较复杂的非结构化决策。因此,构建一个探索性或查询驱动的数据挖掘模型会给水电站的工作人员和专家在数据检索和专业分析的工作上提供方便,使管理者在管理工作上更加的科学合理。
库和数据仓库olap和olam层(数据挖掘的核心内容),用户界面层。用户界面层主要功能是管理员或用户进行人际对话、挖掘数据查询、挖掘结果显示以及数据结果输出。
该水利工程项目管理的内容主要包括:管理水库,水闸管理、堤防管理、南水北调工程管理、项目管理、灌溉等方面。虽然数据挖掘有助于这个过程的开展,水给利工程的管理提供了科学依据,但如果该水利工程管理只是单单的进行数据挖掘,这是不符合数据挖掘系统理论的基本思想。因此,只有在现有的、成熟的国内水利工程项目管理成果的基础上,结合数据挖掘系统,这才是开发水电站管理种数据挖掘系统的最佳方式。
国内许多水利工程在管理和施工过程中,最常用的是gis技术软件。gis软件具有分析处理功能、空间数据查询功能。gis技术软件本身蕴含着多样的数据信息,如当地的一些社会经济、地形地貌、地质、水文环境等。所以,对于水利工程管理数据挖掘系统的未来发展,首先要考虑的应该是如何实现gis系统和数据挖掘理论系统完美衔接。
5总结。
综上所述,数据挖掘技术在水利工程管理中的应用使我们能够分析水利工程的数据更加的全面,这样我们就可以充分挖掘潜在的、有价值的信息,使项目管理更加有效率,使工程的投入资金能被合理的利用,从而提高水电工程质量和工作效率,降低项目管理成本,使水电工程发挥出最大的社会效益和经济效益。虽然在挖掘数据方面还存在很多问题,但我们希望能在今后的水电工程管理中更多的去采用这种技术,为项目管理提供更多的帮助,促进国民经济的发展。
数据挖掘师的技术要求【第四篇】
摘要:大数据和智慧旅游都是当下的热点,没有大数据的智慧旅游无从谈“智慧”,数据挖掘是大数据应用于智慧旅游的核心,文章探究了在智慧旅游应用中,目前大数据挖掘存在的几个问题。
关键词:大数据;智慧旅游;数据挖掘;。
1引言。
随着人民生活水平的进一步提高,旅游消费的需求进一步上升,在云计算、互联网、物联网以及移动智能终端等信息通讯技术的飞速发展下,智慧旅游应运而生。大数据作为当下的热点已经成了智慧旅游发展的有力支撑,没有大数据带给的有利信息,智慧旅游无法变得“智慧”。
2大数据与智慧旅游。
旅游业是信息密、综合性强、信息依存度高的产业[1],这让其与大数据自然产生了交汇。20,江苏省镇江市首先提出“智慧旅游”的概念,虽然至今国内外对于智慧旅游还没有一个统一的学术定义,但在与大数据相关的描述中,有学者从大数据挖掘在智慧旅游中的作用出发,把智慧旅游描述为:透过充分收集和管理所有类型和来源的旅游数据,并深入挖掘这些数据的潜在重要价值信息,然后利用这些信息为相关部门或对象带给服务[2]。这必须义充分肯定了在发展智慧旅游中,大数据挖掘所起的至关重要的作用,指出了在智慧旅游的过程中,数据的收集、储存、管理都是为数据挖掘服务,智慧旅游最终所需要的是利用挖掘所得的有用信息。
3大数据挖掘在智慧旅游中存在的问题。
我国提出用十年时间基本实现智慧旅游的目标[3]过去几年国家旅游局的相关动作均为了实现这一目标。但是在借助大数据推动智慧旅游的可持续性发展中大数据所产生的价值却亟待提高原因之一就是在收集、储存了超多数据后对它们深入挖掘不够没有发掘出数据更多的价值。
信息化建设。
智慧旅游的发展离不开移动网络、物联网、云平台。随着大数据的不断发展,国内许多景区已经实现wi-fi覆盖,部分景区也已实现人与人、人与物、人与景点之间的实时互动,多省市已建有旅游产业监测平台或旅游大数据中心以及数据可视化平台,从中进行数据统计、行为分析、监控预警、服务质量监督等。透过这些平台,已基本能掌握跟游客和景点相关的数据,能够实现更好旅游监控、产业宏观监控,对该地的旅游管理和推广都能发挥重要作用。
但从智慧化的发展来看,我国的信息化建设还需加强。虽然通讯网络已基本能保证,但是大部分景区还无法实现对景区全面、透彻、及时的感知,更为困难的是对平台的建设。在数据共享平台的建设上,除了必备的硬件设施,大数据实验平台还涉及超多部门,如政府管理部门、气象部门、交通、电子商务、旅行社、旅游网站等。如此多的部门相关联,要想建立一个完整全面的大数据实验平台,难度可想而知。
大数据时代缺的不是数据,而是方法。大数据在旅游行业的应用前景十分广阔,但是应对超多的数据,不懂如何收集有用的数据、不懂如何对数据进行挖掘和利用,那么“大数据”犹如矿山之中的废石。旅游行业所涉及的结构化与非结构化数据,透过云计算技术,对数据的收集、存储都较为容易,但对数据的挖掘分析则还在不断探索中。大数据的挖掘常用的方法有关联分析,相似度分析,距离分析,聚类分析等等,这些方法从不同的角度对数据进行挖掘。其中,相关性分析方法透过关联多个数据来源,挖掘数据价值。但针对旅游数据,采用这些方法挖掘数据的价值信息,难度也很大,因为旅游数据中冗余数据很多,数据存在形式很复杂。在旅游非结构化数据中,一张图片、一个天气变化、一次舆情评价等都将会对游客的旅行计划带来影响。对这些数据完全挖掘分析,对游客“行前、行中、行后”大数据的实时性挖掘都是很大的挑战。
数据安全。
数据安全事件屡见不鲜伴着大数据而来的数据安全问题日益凸显出来。在大数据时代无处不在的数据收集技术使我们的个人信息在所关联的数据中心留下痕迹如何保证这些信息被合法合理使用让数据“可用不可见”[4]这是亟待解决的问题。同时在大数据资源的开放性和共享性下个人保密和公民权益受到严重威胁。这一矛盾的存在使数据共享程度与数据挖掘程度成反比。此外经过大数据技术的分析、挖掘个人保密更易被发现和暴露从而可能引发一系列社会问题。
大数据背景下的旅游数据当然也避免不了数据的安全问题。如果游客“吃、住、行、游、娱、购”的数据被放入数据库,被完全共享、挖掘、分析,那游客的人身财产安全将会受到严重影响,最终降低旅游体验。所以,数据的安全管理是进行大数据挖掘的前提。
大数据人才。
大数据背景下的智慧旅游离不开人才的创新活动及技术支持,然而与专业相衔接的大数据人才培养未能及时跟上行业需求,加之创新型人才的外流,以及数据统计未来3~5年大数据行业将面临全球性的人才荒,国内智慧旅游的构建还缺乏超多人才。
4解决思路。
在信息化建设上,加大政府投入,加强基础设施建设,整合结构化数据,抓取非结构化数据,打通各数据壁垒,建设旅游大数据实验平台;在挖掘方法上,对旅游大数据实时性数据的挖掘就应被放在重要位置;在数据安全上,从加强大数据安全立法、监管执法及强化技术手段建设等几个方面着手,提升大数据环境下数据安全保护水平。加强人才的培养与引进,加强产学研合作,培养智慧旅游大数据人才。
参考文献。
数据挖掘师的技术要求【第五篇】
近些年来,已经有越来越多的企业把通信、网络技术和计算机应用引入企业的日常管理工作和业务开发处理当中,企业的各类信息化程度也在不断提高。现代科技信息技术的广泛应用已经显著的提高了企业的工作效率和经济效益。但是,在使用信息技术给企业带来的方便、快捷的同时,也不断的出现了新的问题和需求。企业经过多年积累了大量的历史数据,这些数据对企业当前的日常经营活动几乎没有任何的使用价值,成了留之无用弃之可惜的累赘。而且储藏这些历史数据会对企业造成很大的困难和费用开销。为此数据挖掘技术应用在网络营销中势在必行,全面细致的分析数据库资源并从中提取有价值的信息来对商业决策进行支持,从而来控制运营成本、提高经济效益。本文将从网络营销中数据挖掘技术的几个应用进行探讨和分析。
1客户关系管理。
客户关系管理在网络营销,商业竞争是一家以客户为中心的竞技状态的客户,留住客户,扩大客户基础,建立密切的客户关系,客户需求分析和创造客户需求等,是非常关键的营销问题。客户关系管理,营销和信息技术领域是一个新概念,这在90年代初,软件产品在上世纪90年代后期出现的诞生。目前,在国内和国外的此类产品的研究和发展阶段。然而,继续与数据仓库和数据挖掘技术的进步和发展,客户关系管理,也是对实际应用阶段。crm的目标是管理者与客户的互动,提升客户价值,提高客户满意度,提高客户的忠诚度,还发现,市场营销和销售渠道,然后寻找新客户,提高客户的利润贡献率的最终目的是为了推动社会和经济效益。客户关系管理的目的,应用是改善企业与客户的关系,它是企业和服务本质管理和协调,以满足客户的需求,企业政策支持这项工作,并联系客户服务加强管理,提高客户满意度和品牌忠诚度。
然而,数据挖掘可以应用到很多方面的crm和不同阶段,包括以下内容:
(1)“一对一”营销的内部工作人员认识到,客户是在这个领域的企业,而不是贸易发展生存的关键。与每一个客户接触的过程,也是了解客户的进程,而且也让客户了解业务流程。
(2)企业与客户之间的销售应该是一种商业关系不断向前发展。客户和营销公司成立这种方式,而且有许多方法可以使这种与客户的关系,往往以改善包括:延长时间,客户关系和维护客户关系,以进一步加强相互交往过程中,公司可以在对方取得联系更多的利润。
(3)客户对客户盈利能力分析。我们的客户盈利能力是非常不同的,如果你不明白客户盈利能力,很难制定有效的营销策略,以获取最有价值的客户,或进一步提高客户的忠诚度的价值。数据挖掘技术可以用来预测客户在市场条件变化不同的盈利能力。它可以找到所有这些行为和使用模型来预测客户行为模式的客户交易盈利水平或新客户找到高利润。
(4)在所有部门维护客户关系的竞争日趋激烈,企业获得新客户的成本上升,因此,保持现有客户的关系变得越来越重要。对于企业客户可分为三大类:没有价值或者低价值的客户,不容易失去宝贵的客户,并不断寻找更多的优惠,更有价值的服务给客户。前两个类型的`客户,客户关系管理,现代化,然而,最具潜力的市场活动,是第三个层次的用户,而且还特别需求和营销工具,以保护客户,可以减缓企业经营成本,而且还获得了宝贵的客户。数据挖掘还可以发现,由于客户流失,该公司能够满足这些客户的需要,采取适当措施,保持销售。
(5)客户访问企业业务系统资源,包括能够获得新客户的关键指标。为了提供这些新的资源,包括企业搜索客户谁不知道该产品的客户,可能是竞争对手,服务客户。这些细分客户,潜在客户可以帮助企业完成检查。
2企业经营定位。
通过挖掘客户的有关数据,可以对客户进行分类,找出其相同点和不同点,以便为客户提供个性化的产品和服务,使企业和客户之间能够通过网络进行有效的沟通和信息交流。例如,关联分析,客户在购买某种商品时,有可能会连带着购买其他的相关产品,这样购买的某种商品和连带购买的其他相关产品之间就存在着某种关联,企业可以针对这种关联进行分析,分析出规律,已制定有效的营销策略来长效的起到吸引客户连带消费,购买其他产品的营销策略。它能够智能化地从大量的数据中提取出有用的信息和知识,为企业的管理人员提供决策支持。数据挖掘技术使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。
客户群体的划分也会用到数据挖掘,没有基于数据挖掘的客户划分,就没有真正的差异化、个性化营销,就没有现代营销的根本。做为企业的领导者,不管你的企业是卖产品的还是卖服务,第一个应该准确把握的商业问题就是你的目标客户群体,他们是谁,有什么特点和行为模式,有那些独特的喜好可以作为营销的突破口,有多大的多长久的赢利价值。这些问题是你整个商业运做的核心和基础,不了解你的客户,下面的路就根本别指望能走下去了。数据挖掘营销应用中的客户群体划分可以科学有效的解决这个问题,也能给企业找到一个合理的营销定位。
3客户信用风险控制。
数据挖掘技术在90年代开始应用于信用评估与风险分析中。企业在进行网络营销的过程中会受到各种各样的来自买方的信用风险的威胁,随着市场竞争的加剧,贸易信用已经成为企业成功开发客户和加强客户关系的重要条件。客户信用管理主要是搜集储存客户信息,因为客户既是企业最大的财富来源,也是风险的主要来源。为了让企业在这方面更少的受到威胁,可以利用数据挖掘技术发现企业经常面临的诈骗行为或延付货款行为,进而进行回避。同时尽可能把客户信用风险控制在交易发生之前是成功信用管理的根本。因此,充分获取客户的详细资料并做出安全的决策非常重要。
(3)数据挖掘技术也可以适应各种形式的数据,数据挖掘可以是连续的数据,离散数据,而其他形式的数据处理,以便在更大的灵活性,在选择指标时,更加符合客观实际的信用风险模型。
为现代信用风险管理方法有两个:第一是所谓的指数法,其基础是信用相关业务的某些特性来企业信用评估;第二类是所谓的结构化方法,根据历史数据和市场数据模拟在企业资产价值变化的动态持续的过程,然后确定其企业信用的位置。
网络营销作为适应网络经济时代的网络虚拟市场的新营销理论,是市场营销理念在新时期的发展和应用。它能够智能化地从大量的数据中提取出有用的信息和知识,为企业的管理人员提供决策支持。数据挖掘技术使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。
1.维护原有客户,挖掘潜在新客户。
网络营销中销售商可以通过客户的访问记录来挖掘出客户的潜在信息,跟据客户的兴趣与需求向客户有针对性的做个性化的推荐,制定出客户满意的产品服务。在做好维护原有老客户的基础上,通过对数据的挖掘,利用分类技术,也可以寻找出潜在的客户,通过对web日志的挖掘,可以对已经存在的访问者进行分类,根据这种精细的分类,还可以找到潜在的新客户。
2.制定营销策略,优化促销活动。
对于保留的商品访问记录和销售记录进行挖掘,可以发现客户的访问规律,了解客户消费的生命周期,起伏规律,结合市场形势的变化,针对不同的商品和客户群制定不同的营销策略,保证促销活动针对客户群有的放矢,收到意想不到的效果。
3.降低运营成本,提高竞争力。
网络营销的管理者可以通过数据挖掘发现市场反馈的可靠信息,预测客户未来的购买行为,有针对性的进行营销活动,还可以根据产品访问者的浏览习惯来觉定产品广告的位置,使广告有针对性的起到宣传的效果。从而提高广告的投资回报率,从而能降低运营成本,提高且的核心竞争力。
4.对客户进行个性化推荐。
根据客户采矿活动对网络规则,有针对性的网络营销平台,提供“个性化”服务。个性化服务是在服务策略和服务内容的不同客户的不同,其本质是客户为中心的web服务的需求。它通过收集和分析客户资料,以了解客户的利益和购买行为,然后采取主动,以达到建议的服务。
5.完善网络营销网站的设计。
参考文献。
1冯英健著,《网络营销基础与实践》,清华大学出版社,1月第1版。
2.,,/mitpress,menlopark,ca.:。
数据挖掘师的技术要求【第六篇】
职责:
1、针对具体的业务场景需求、定义数据分析及挖掘问题;。
3、搭建高扩展高性能的数据分析模型库,作为数据分析团队的基础工具;。
4、完成领导安排的其他工作。
任职要求:
1、计算机、统计学、数学相关专业,本科及以上学历;。
2、3年及以上相关工作经验,985和211学的优秀毕业生可放宽至2年以上;。
3、熟悉phm的应用背景、功能定义、系统架构、关键技术;。
4、熟练掌握python进行数据挖掘;会使用java进行软件开发者优先考虑;。
6、熟悉数据仓库,熟练使用sql语言,有良好的数据库编程经验;。
7、具备较强的立解决问题的能力,勤奋敬业、主动性和责任心强。
数据挖掘师的技术要求【第七篇】
摘要:在国家电网公司信息化工程的建设过程中,积累了大量的文本数据。如何挖掘文本数据中蕴含的有价值信息将成为电力企业大数据挖掘方向研究的重点对象。文章结合电力行业目前的数据现状,使用文本挖掘的方法对电力设备检修资金投入工作效能场景进行挖掘,对生产信息管理系统中报缺单数据进行文本聚类,实现对缺陷的细分。实践表明,该方法可以得出各类别的缺陷特征,从而证明了文本挖掘在电力行业的可用性。
关键词:电力设备检修;文本数据;文本挖掘;大数据挖掘。
随着信息化的快速发展,国家电网公司各专业积累的数据量越来越庞大。庞大数据的背后,由于数据结构和存储方式的多样化以及电力系统内部不同专业从业者的知识面层次不齐等,其中被利用的数据只占少量的部分,造成大量的有价值数据被浪费。在被浪费的数据中,以文本形式存在的数据占很大比重,如何从比较复杂的文本数据中获得需要的数据受到国家电网公司的普遍关注。国家电网公司经过sg186、三集五大等大型信息化工程的建设,积累了海量的业务数据,其中包括大量的文本数据。目前,国家电网公司对业务数据的利用主要集中在结构化数据的统计和分析,这些方法无法直接应用在非结构化文本数据中,更无法对其中隐含的价值规律进行深度分析挖掘。针对非结构化文本数据量不断增大、业务应用范围不断扩大这一现状,为了提升国家电网公司企业运营管理精益化水平,需要进一步挖掘非结构化数据中潜在的数据价值。因此,开展电力大数据文本数据挖掘技术应用场景和一般流程的研究显得尤为重要[1]。
1非结构化数据概述。
与结构化数据(能够用二维表结构遵循一定的逻辑语法进行体现的数据)相比,非结构化数据不能在数据库中采用二维结构逻辑形式来表示,这些形式主要有word文档、文本、图片、标准通用标记语言下的子集xml、html、excel报表、ppt、audio、video、jpg、bmp等。半结构化数据处于完全结构化数据(逻辑型、关系型数据库中的数据)和完全无结构化数据(bmp、jpg、video文件)中间,它一般的功能是对系统文件的描述,如系统应用帮助模块,有一定的逻辑结构,同时也包含数据格式,两者相融在一起,比较均衡,没有明显的界限[2]。进入21世纪后,网络技术飞速发展,特别是内联网和因特网技术取得突飞猛进的发展,各类非结构数据类型格式日益增多,以往的数据库主要用于管理结构化数据,对于非结构化数据的管理稍显乏力,为了适应非结构数据的迅猛发展,数据库的革新势在必行,在内联网和因特网技术的基础上,对数据库的内在结构进行改进和创新,使其能够兼容和处电力信息与通信技术第14卷第1期8电力大数据技术理非结构数据形式。北京国信贝斯是我国非结构化数据库开发和设计的领军者,其旗下开发的ibase数据库能够兼容和处理目前市面上存在的各种文件名、格式、多媒体信息,能够基于内联网和互联网对海量信息进行搜索、管理,技术已经达到全球领先水平。
文本挖掘。
文本挖掘的对象是用自然语言描述的语句、论文、web页面等非结构化文本信息,这类信息无法使用结构化数据的挖掘方法进行处理;文本挖掘指通过对单个词语和语法的精准分析,通过分析结构在海量的非结构化数据中检索意思相近的词语、句子或者信息[3]。
文本挖掘流程。
挖掘流程如图1所示。图1挖掘流程)文本预处理:把与任务直接关联的信息文本转化成可以让文本挖掘工具处理的形式,这个过程分3步:分段;预读文本,把文本特征展现出来;特征抽取。2)文本挖掘:完成文本特征抽取后,通过智能机器检索工具识别符合主题目标的文段信息,在海量信息或者用户指定的数据域中搜索与文本预处理后得出的文本特征相符或相近的数据信息,然后通过进一步识别和判断,达到精确检索的目的,这是一个非常复杂的过程,纵跨了多个学科,包括智能技术、信息技术、智能识别技术、非结构数据库技术、可视化技术、预处理技术、读码技术等。3)模式评估:模式评估是用户根据自己的需求主题设置符合自己需求主题或目标的模式,把挖掘到的文本或信息与自己设置的模式进行匹配,如果发现符合主题要求,则存储该数据和模式以方便用户调用,如果不符合,则跳转回原来的环节进行重新检索,然后进行下一个匹配过程的模式评估。
解决非结构化文本挖掘问题,现阶段主要有2种方法:一是探索新型的数据挖掘算法以准确挖掘出相应的非结构化数据信息,基于数据本身所体现的复杂特性,使得算法的实施愈加困难;二是把非结构化问题直接转换成结构化,通过实施相应的数据挖掘技术达到挖掘目的。而在语义关系方面,就要应用到特定的语言处理成果完成分析过程。下文是根据文本挖掘的大致流程来介绍其所用到的相关技术。
数据预处理技术。
文本数据预处理技术大致可分为分词技术、特征表示以及特征提取法。1)分词技术主要有两大类:一种为针对词库的分词算法;另一种为针对无词典的分词技术。前者主要包含正向最大/小匹配和反向匹配等。而后者的基础思路为:在统计词频的基础上,把原文中紧密相连的2个字当作一个词来统计其出现的次数,若频率较高,就有可能是一个词,当该频率达到了预设阈值,就可把其当作一个词来进行索引。2)特征表示通常是把对应的特征项作为本文的标示,在进行文本挖掘时只需要处理相对应的特征项,就能完成非结构化的文本处理,直接实现结构化转换目的。特征表示的建立过程实际上就是挖掘模型的建立过程,其模型可分为多种类型,如向量空间模型与概率型等[5]。3)特征提取法通常是建立起特定的评价函数,以此评价完所有特征,然后把这些特征依照评价值的高低顺序进行排列,将评价值最高项作为优选项。在实际文本处理过程中所应用的评价函数主要包括信息增益、互信息以及词频等。
挖掘常用技术。
从文本挖掘技术的研究和应用情况来看,在现有的文本挖掘技术类别中应用较为广泛的主要包括文本分类、自动文摘以及文本聚类[4-5]。1)文本分类。文本分类是给机器添加相应的分类模型,当用户阅读文本时能够更为便捷,在搜索文本信息时,能够在所设定的搜索范围内快速和准确的获取。用于文本分类的算法较多,主要有决策树、贝叶斯分类、支持向量机(svm)、向量空间模型(vectorspacemodel,vsm)、逻辑回归(logisticregression,lr)以及神经网络等。2)自动文摘。自动文摘是通过计算机技术智能的把原文的中心内容浓缩成简短、连续的文字段落,以此来尽可能地降低用户阅读的文本信息量。3)文本聚类。文本聚类与文本分类的作用大抵相同,所实施的过程有所区别。文本聚类是将内容相近的文本归到同个类别,尽可能地区分内容不同的文本。其标准通常可以依照文本属性或者文本内容来进行聚类。聚类方法大致可分为平面划分法与层次聚类法。另外,除了上述常用的文本挖掘技术,许多研究还涉及关联分析、分布预测分析和结构分析等。
文本挖掘系统模式评估方法。
数据挖掘系统的评估是至关重要的,现在已有大量的研究来衡量这一标准,以下是公认的评估方法。1)查全率和查准率。查全率代表实际被检出的文本的百分比;查准率是所检索到的.实际文本与查询相关文本的百分比。2)冗余度和放射性。冗余度表示信息抽取中冗余的程度;放射性表示一个系统在抽取事实不断增多时产生错误的趋势。最低的冗余度和放射性是系统追求的最终目标。3)双盲测试。先用机器生成一组输出结果,再由相关专家产生一组输出结果,然后混合2组输出结果,这种混合后的输出集再交给另一些相关专家进行验证,让他们给予准确性方面的评估。
文本挖掘技术在国内电力行业属于新兴的前沿领域,对从业人员的素质要求相对比较高。由于现阶段知识和技术层面上匮乏,国家电网几乎没有关于此方面的项目实施。本节通过2个电力运营监测业务的应用需求,初步探讨文本挖掘的建模过程。
电力运营监测业务应用需求。
1)检修资金投入工作效能分析场景分析。大检修和技改是保障电网安全的重要工作。由于运检业务系统的数据质量问题,通过对量化数据的统计,无法准确掌握大修、技改资金投入的工作效能情况。但设备的实际运行状态可以通过文本类故障记录、运行日志等进行反映,因此,采用文本挖掘技术对检修工作效能进行分析与可视化展现,同时结合传统的统计方法,实现对大修技改资金投入工作效能的分析和监测。例如,可以通过分析历年的故障记录信息,反映出每年主要故障变化情况,进而结合每年大修技改资金投入情况,分析资金投入是否与预期目标相一致。2)家族缺陷识别分析。家族缺陷是指同一厂家生产的同一型号、同一批次的设备在运行过程中出现了相同或相似的缺陷。家族缺陷识别分析是通过对运行记录、故障记录等设备运行文本信息的挖掘和可视化分析,对设备家族缺陷进行识别。该场景既可以辅助基层业务人员对家族缺陷进行准确判断,同时可以作为一种辅助手段为总部专家判定家族缺陷提供参考,从而实现对家族缺陷辨识方式的优化,并基于此为检修计划制定、厂商评价、采购建议等提供决策支撑。
文本分析建模过程。
第1步:将原始的非结构化数据源转换为结构化数据,分析文本集合中各个文本之间共同出现的模式;汇总与家族缺陷相关的所有文档,形成原始数据源的集合。第2步:对原始数据源的集合进行分词处理,建立特征集,使用词频/逆文档频率(termfrequency-inversedocumentfrequency,tf/idf)权值计算方法得到各个点的维度权值,判断关键字的词频,例如“主变1号”运行记录中多次出现,但在故障记录中很少出现,那么认为“主变1号”有很好的类别区分能力。第3步:对分词后的文档建立索引,汇总所有文档的索引形成索引库,并对索引库排序。第4步:文档向量化;构建向量空间模型,将文档表达为一个矢量,看作向量空间中的一个点;实际分析过程中对多维数据首先将其降低维度,降低维度后得到一个三维空间模型,文档向量化生成文档特征词对应表、文档相似度表。第5步:结合业务实际,对相似度较高的表中出现的关键字进行比对,例如:“主变1号”、“停电故障”等关键字在多个日志中频繁出现,则该文档所记录的相关设备存在异常的可能性较大。
文本分析应用及成效。
对生产信息管理系统中报缺单数据中的报缺单名称进行文本聚类,实现对缺陷的细分,进而对各类别在非聚类变量上进行分析,得出各类别的缺陷特征。经过近一年以来在国网辽宁电力公司的逐步应用,科学的分析挖掘出缺陷主要集中在开关、主变、指示灯、直流、冷却器、调速器等设备,主要出现启吕旭明(1981–),男,河北保定人,高级工程师,从事电力企业信息化、智能电网及信息安全研究与应用工作;雷振江(1976–),男,辽宁沈阳人,高级工程师,从事电力信息化项目计划、重点项目建设、信息技术研究与创新应用、信息化深化应用等相关工作;赵永彬(1975–),男,辽宁朝阳人,高级工程师,从事电力信息通信系统调度、运行、客服及信息安全等相关工作;由广浩(1983–),男,辽宁辽阳人,工程师,从事信息网络建设、信息安全等工作。作者简介:动、漏水、停机、渗水等缺陷现象。公司故障处理快速响应、及时维修、提高供电质量和服务效率得到了显著的提升。电力设备故障缺陷特征示意如图2所示。
4结语。
国家电网文本挖掘的目的是从海量数据中抽取隐含的、未知的、有价值的文本数据,利用数据挖掘技术处理电力公司文本数据,将会给企业带来巨大的商业价值。本文提出的关于检修资金投入工作效能分析和家族缺陷识别分析2个文本挖掘实例只是文本挖掘在电力行业应用的一角。如今,数据挖掘技术与电力行业正处于快速发展阶段,文本挖掘的应用将越来越广泛。下一阶段的研究目标是探寻有效办法将数据挖掘技术融入到文本挖掘领域的实际应用中,使得国家电网文本挖掘项目得以顺利实施,并达到预期成效。
参考文献:
[1]费尔德曼.文本挖掘(英文版)[m].北京:人民邮电出版社,.
[2]孙涛.面向半结构化的数据模型和数据挖掘方法研究[d].吉林:吉林大学,.
[3]胡健,杨炳儒,宋泽锋,等.基于非结构化数据挖掘结构模型的web文本聚类算法[j].北京科技大学学报,,30(2):,yangbing-ru,songze-feng,tclusteringalgorithmbasedonnonstructuraldataminingmodel[j].journalofuniversityofscienceandtechnologybeijing,2008,30(2):217-220.
[4]周昭涛.文本聚类分析效果评价及文本表示研究[d].北京:中国科学院研究生院(计算技术研究所),.
[5]tanpn,steinbachm,kumarv.数据挖掘导论(英文版)[m].北京:人民邮电出版社,.
数据挖掘师的技术要求【第八篇】
数据挖掘又名数据探勘、信息挖掘。它是数据库知识筛选中非常重要的一步。数据挖掘其实指的就是在大量的数据中通过算法找到有用信息的行为。一般情况下,数据挖掘都会和计算机科学紧密联系在一起,通过统计集合、在线剖析、检索筛选、机器学习、参数识别等多种方法来实现最初的目标。统计算法和机器学习算法是数据挖掘算法里面应用得比较广泛的两类。统计算法依赖于概率分析,然后进行相关性判断,由此来执行运算。
而机器学习算法主要依靠人工智能科技,通过大量的样本收集、学习和训练,可以自动匹配运算所需的相关参数及模式。它综合了数学、物理学、自动化和计算机科学等多种学习理论,虽然能够应用的领域和目标各不相同,但是这些算法都可以被独立使用运算,当然也可以相互帮助,综合应用,可以说是一种可以“因时而变”、“因事而变”的算法。在机器学习算法的领域,人工神经网络是比较重要和常见的一种。因为它的优秀的数据处理和演练、学习的能力较强。
而且对于问题数据还可以进行精准的识别与处理分析,所以应用的频次更多。人工神经网络依赖于多种多样的建模模型来进行工作,由此来满足不同的数据需求。综合来看,人工神经网络的建模,它的精准度比较高,综合表述能力优秀,而且在应用的过程中,不需要依赖专家的辅助力量,虽然仍有缺陷,比如在训练数据的时候耗时较多,知识的理解能力还没有达到智能化的标准,但是,相对于其他方式而言,人工神经网络的优势依旧是比较突出的。
2以机器学习算法为基础的gsm网络定位。
定位问题的建模。
建模的过程主要是以支持向量机定位方式作为基础,把定位的位置栅格化,面积较小的栅格位置就是独立的一种类别,在定位的位置内,我们收集数目庞大的终端测量数据,然后利用计算机对测量报告进行分析处理,测量栅格的距离度量和精准度,然后对移动终端栅格进行预估判断,最终利用机器学习进行分析求解。
采集数据和预处理。
本次研究,我们采用的模型对象是我国某一个周边长达10千米的二线城市。在该城市区域内,我们测量了四个不同时间段内的数据,为了保证机器学习算法定位的精准性和有效性,我们把其中的三批数据作为训练数据,最后一组数据作为定位数据,然后把定位数据周边十米内的前三组训练数据的相关信息进行清除。一旦确定某一待定位数据,就要在不同的时间内进行测量,按照测量出的数据信息的经纬度和平均值,再进行换算,最终,得到真实的数据量,提升定位的速度以及有效程度。
以基站的经纬度为基础的初步定位。
用机器学习算法来进行移动终端定位,其复杂性也是比较大的,一旦区域面积增加,那么模型和分类也相应增加,而且更加复杂,所以,利用机器学习算法来进行移动终端定位的过程,会随着定位区域面积的增大,而耗费更多的时间。利用基站的经纬度作为基础来进行早期的定位,则需要以下几个步骤:要将边长为十千米的正方形分割成一千米的小栅格,如果想要定位数据集内的相关信息,就要选择对边长是一千米的小栅格进行计算,而如果是想要获得边长一千米的大栅格,就要对边长是一千米的栅格精心计算。
以向量机为基础的二次定位。
在完成初步定位工作后,要确定一个边长为两千米的正方形,由于第一级支持向量机定位的区域是四百米,定位输出的是以一百米栅格作为中心点的经纬度数据信息,相对于一级向量机的定位而言,二级向量机在定位计算的时候难度是较低的`,更加简便。后期的预算主要依赖决策函数计算和样本向量机计算。随着栅格的变小,定位的精准度将越来越高,而由于增加分类的问题数量是上升的,所以,定位的复杂度也是相对增加的。
以k-近邻法为基础的三次定位。
第一步要做的就是选定需要定位的区域面积,在二次输出之后,确定其经纬度,然后依赖经纬度来确定边长面积,这些都是进行区域定位的基础性工作,紧接着就是定位模型的训练。以k-近邻法为基础的三次定位需要的是综合训练信息数据,对于这些信息数据,要以大小为选择依据进行筛选和合并,这样就能够减少计算的重复性。当然了,选择的区域面积越大,其定位的速度和精准性也就越低。
3结语。
近年来,随着我国科学技术的不断发展和进步,数据挖掘技术愈加重要。根据上面的研究,我们证明了,在数据挖掘的过程中,应用机器学习算法具有举足轻重的作用。作为一门多领域互相交叉的知识学科,它能够帮助我们提升定位的精准度以及定位速度,可以被广泛的应用于各行各业。所以,对于机器学习算法,相关人员要加以重视,不断的进行改良以及改善,切实的发挥其有利的方面,将其广泛应用于智能定位的各个领域,帮助我们解决关于户外移动终端的定位的问题。
参考文献。
[2]李运.机器学习算法在数据挖掘中的应用[d].北京邮电大学,.
数据挖掘论文五:题目:软件工程数据挖掘研究进展。
摘要:数据挖掘是指在大数据中开发出有价值信息数据的过程。计算机技术的不断进步,通过人工的方式进行软件的开发与维护难度较大。而数据挖掘能够有效的提升软件开发的效率,并能够在大量的数据中获得有效的数据。文章主要探究软件工程中数据挖掘技术的任务和存在的问题,并重点论述软件开发过程中出现的问题和相关的解决措施。
关键词:软件工程;数据挖掘;解决措施;。
在软件开发过程中,为了能够获得更加准确的数据资源,软件的研发人员就需要搜集和整理数据。但是在大数据时代,人工获取数据信息的难度极大。当前,软件工程中运用最多的就是数据挖掘技术。软件挖掘技术是传统数据挖掘技术在软件工程方向的其中一部分。但是它具有自身的特征,体现在以下三个方面:。
(1)在软件工程中,对有效数据的挖掘和处理;。
(2)挖掘数据算法的选择问题;。
(3)软件的开发者该如何选择数据。
1在软件工程中数据挖掘的主要任务。
在数据挖掘技术中,软件工程数据挖掘是其中之一,其挖掘的过程与传统数据的挖掘无异。通常包括三个阶段:第一阶段,数据的预处理;第二阶段,数据的挖掘;第三阶段,对结果的评估。第一阶段的主要任务有对数据的分类、对异常数据的检测以及整理和提取复杂信息等。虽然软件工程的数据挖掘和传统的数据挖掘存在相似性,但是也存在一定的差异,其主要体现在以下三个方面:。
软件工程的数据更加复杂。
软件工程数据主要包括两种,一种是软件报告,另外一种是软件的版本信息。当然还包括一些软件代码和注释在内的非结构化数据信息。这两种软件工程数据的算法是不同的,但是两者之间又有一定的联系,这也是软件工程数据挖掘复杂性的重要原因。
数据分析结果的表现更加特殊。
传统的数据挖掘结果可以通过很多种结果展示出来,最常见的有报表和文字的方式。但是对于软件工程的数据挖掘来讲,它最主要的职能是给软件的研发人员提供更加精准的案例,软件漏洞的实际定位以及设计构造方面的信息,同时也包括数据挖掘的统计结果。所以这就要求软件工程的数据挖掘需要更加先进的结果提交方式和途径。
对数据挖掘结果难以达成一致的评价。
我国传统的数据挖掘已经初步形成统一的评价标准,而且评价体系相对成熟。但是软件工程的数据挖掘过程中,研发人员需要更多复杂而又具体的数据信息,所以数据的表示方法也相对多样化,数据之间难以进行对比,所以也就难以达成一致的评价标准和结果。不难看出,软件工程数据挖掘的关键在于对挖掘数据的预处理和对数据结果的表示方法。
2软件工程研发阶段出现的问题和解决措施。
软件在研发阶段主要的任务是对软件运行程序的编写。以下是软件在编码和结果的提交过程中出现的问题和相应的解决措施。
对软件代码的编写过程。
该过程需要软件的研发人员能够对自己需要编写的代码结构与功能有充分的了解和认识。并能够依据自身掌握的信息,在数据库中搜集到可以使用的数据信息。通常情况下,编程需要的数据信息可以分为三个方面:。
(1)软件的研发人员能够在已经存在的代码中搜集可以重新使用的代码;。
(2)软件的研发人员可以搜寻可以重用的静态规则,比如继承关系等。
(3)软件的开发人员搜寻可以重用的动态规则。
包括软件的接口调用顺序等。在寻找以上信息的过程中,通常是利用软件的帮助文档、寻求外界帮助和搜集代码的方式实现,但是以上方式在搜集信息过程中往往会遇到较多的问题,比如:帮助文档的准确性较低,同时不够完整,可利用的重用信息不多等。
对软件代码的重用。
在对软件代码重用过程中,最关键的问题是软件的研发人员必须掌握需要的类或方法,并能够通过与之有联系的代码实现代码的重用。但是这种方式哦足迹信息将会耗费工作人员大量的精力。而通过关键词在代码库中搜集可重用的软件代码,同时按照代码的相关度对搜集到的代码进行排序,该过程使用的原理就是可重用的代码必然模式基本类似,最终所展现出来的搜索结果是以上下文结构的方式展现的。比如:类与类之间的联系。其实现的具体流程如下:。
(1)软件的开发人员创建同时具备例程和上下文架构的代码库;。
(2)软件的研发人员能够向代码库提供类的相关信息,然后对反馈的结果进行评估,创建新型的代码库。
(3)未来的研发人员在搜集过程中能够按照评估结果的高低排序,便于查询,极大地缩减工作人员的任务量,提升其工作效率。
对动态规则的重用。
软件工程领域内对动态规则重用的研究已经相对成熟,通过在编译器内安装特定插件的方式检验代码是否为动态规则最适用的,并能够将不适合的规则反馈给软件的研发人员。其操作流程为:。
(1)软件的研发人员能够规定动态规则的顺序,主要表现在:使用某一函数是不能够调用其他的函数。
(2)实现对相关数据的保存,可以通过队列等简单的数据结构完成。在利用编译拓展中检测其中的顺序。
(3)能够将错误的信息反馈给软件的研发人员。
3结束语。
在软件工程的数据挖掘过程中,数据挖掘的概念才逐步被定义,但是所需要挖掘的数据是已经存在的。数据挖掘技术在软件工程中的运用能够降低研发人员的工作量,同时软件工程与数据挖掘的结合是计算机技术必然的发展方向。从数据挖掘的过程来讲,在其整个实施过程和周期中都包括软件工程。而对数据挖掘的技术手段来讲,它在软件工程中的运用更加普遍。在对数据挖掘技术的研究过程中可以发现,该技术虽然已经获得一定的效果,但是还有更多未被挖掘的空间,还需要进一步的研究和发现。
参考文献。
[1]王艺蓉.试析面向软件工程数据挖掘的开发测试技术[j].电子技术与软件工程,(18):64.
[4]刘桂林.分析软件工程中数据挖掘技术的应用方式[j].中国新通信,2017,19(13):119.
数据挖掘师的技术要求【第九篇】
近些年来,已经有越来越多的企业把通信、网络技术和计算机应用引入企业的日常管理工作和业务开发处理当中,企业的各类信息化程度也在不断提高。现代科技信息技术的广泛应用已经显著的提高了企业的工作效率和经济效益。但是,在使用信息技术给企业带来的方便、快捷的同时,也不断的出现了新的问题和需求。企业经过多年积累了大量的历史数据,这些数据对企业当前的日常经营活动几乎没有任何的使用价值,成了留之无用弃之可惜的累赘。而且储藏这些历史数据会对企业造成很大的困难和费用开销。为此数据挖掘技术应用在网络营销中势在必行,全面细致的分析数据库资源并从中提取有价值的信息来对商业决策进行支持,从而来控制运营成本、提高经济效益。本文将从网络营销中数据挖掘技术的几个应用进行探讨和分析。
1客户关系管理。
客户关系管理在网络营销,商业竞争是一家以客户为中心的竞技状态的客户,留住客户,扩大客户基础,建立密切的客户关系,客户需求分析和创造客户需求等,是非常关键的营销问题。客户关系管理,营销和信息技术领域是一个新概念,这在90年代初,软件产品在上世纪90年代后期出现的诞生。目前,在国内和国外的此类产品的研究和发展阶段。然而,继续与数据仓库和数据挖掘技术的进步和发展,客户关系管理,也是对实际应用阶段。crm的目标是管理者与客户的互动,提升客户价值,提高客户满意度,提高客户的忠诚度,还发现,市场营销和销售渠道,然后寻找新客户,提高客户的利润贡献率的最终目的是为了推动社会和经济效益。客户关系管理的目的,应用是改善企业与客户的关系,它是企业和服务本质管理和协调,以满足客户的需求,企业政策支持这项工作,并联系客户服务加强管理,提高客户满意度和品牌忠诚度。
然而,数据挖掘可以应用到很多方面的crm和不同阶段,包括以下内容:
(1)“一对一”营销的内部工作人员认识到,客户是在这个领域的企业,而不是贸易发展生存的关键。与每一个客户接触的'过程,也是了解客户的进程,而且也让客户了解业务流程。
(2)企业与客户之间的销售应该是一种商业关系不断向前发展。客户和营销公司成立这种方式,而且有许多方法可以使这种与客户的关系,往往以改善包括:延长时间,客户关系和维护客户关系,以进一步加强相互交往过程中,公司可以在对方取得联系更多的利润。
(3)客户对客户盈利能力分析。我们的客户盈利能力是非常不同的,如果你不明白客户盈利能力,很难制定有效的营销策略,以获取最有价值的客户,或进一步提高客户的忠诚度的价值。数据挖掘技术可以用来预测客户在市场条件变化不同的盈利能力。它可以找到所有这些行为和使用模型来预测客户行为模式的客户交易盈利水平或新客户找到高利润。
(4)在所有部门维护客户关系的竞争日趋激烈,企业获得新客户的成本上升,因此,保持现有客户的关系变得越来越重要。对于企业客户可分为三大类:没有价值或者低价值的客户,不容易失去宝贵的客户,并不断寻找更多的优惠,更有价值的服务给客户。前两个类型的客户,客户关系管理,现代化,然而,最具潜力的市场活动,是第三个层次的用户,而且还特别需求和营销工具,以保护客户,可以减缓企业经营成本,而且还获得了宝贵的客户。数据挖掘还可以发现,由于客户流失,该公司能够满足这些客户的需要,采取适当措施,保持销售。
(5)客户访问企业业务系统资源,包括能够获得新客户的关键指标。为了提供这些新的资源,包括企业搜索客户谁不知道该产品的客户,可能是竞争对手,服务客户。这些细分客户,潜在客户可以帮助企业完成检查。
2企业经营定位。
通过挖掘客户的有关数据,可以对客户进行分类,找出其相同点和不同点,以便为客户提供个性化的产品和服务,使企业和客户之间能够通过网络进行有效的沟通和信息交流。例如,关联分析,客户在购买某种商品时,有可能会连带着购买其他的相关产品,这样购买的某种商品和连带购买的其他相关产品之间就存在着某种关联,企业可以针对这种关联进行分析,分析出规律,已制定有效的营销策略来长效的起到吸引客户连带消费,购买其他产品的营销策略。它能够智能化地从大量的数据中提取出有用的信息和知识,为企业的管理人员提供决策支持。数据挖掘技术使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。
客户群体的划分也会用到数据挖掘,没有基于数据挖掘的客户划分,就没有真正的差异化、个性化营销,就没有现代营销的根本。做为企业的领导者,不管你的企业是卖产品的还是卖服务,第一个应该准确把握的商业问题就是你的目标客户群体,他们是谁,有什么特点和行为模式,有那些独特的喜好可以作为营销的突破口,有多大的多长久的赢利价值。这些问题是你整个商业运做的核心和基础,不了解你的客户,下面的路就根本别指望能走下去了。
数据挖掘营销应用中的客户群体划分可以科学有效的解决这个问题,也能给企业找到一个合理的营销定位。
3客户信用风险控制。
数据挖掘技术在90年代开始应用于信用评估与风险分析中。企业在进行网络营销的过程中会受到各种各样的来自买方的信用风险的威胁,随着市场竞争的加剧,贸易信用已经成为企业成功开发客户和加强客户关系的重要条件。客户信用管理主要是搜集储存客户信息,因为客户既是企业最大的财富来源,也是风险的主要来源。为了让企业在这方面更少的受到威胁,可以利用数据挖掘技术发现企业经常面临的诈骗行为或延付货款行为,进而进行回避。同时尽可能把客户信用风险控制在交易发生之前是成功信用管理的根本。因此,充分获取客户的详细资料并做出安全的决策非常重要。
数据挖掘师的技术要求【第十篇】
科研是科学研究的简称,具体是指为认识客观事物在内在本质及其运动规律,而借助某些技术手段和设备,开展调查研究、实验等活动,并为发明和创造新产品提供理论依据。科研管理是对科研项目全过程的管理,如课题管理、经费管理、成果管理等等。由于科学研究中涉及的内容较多,从而给科研管理工作增添了一定的难度。为进一步提升科研管理水平,可在不同的管理环节中,对数据挖掘技术进行应用。下面就此展开详细论述。
2.1在立项及可行性评估中的应用。
科研管理工作的开展需要以相关的科研课题作为依托,当课题选定之后,需要对其可行性及合理性进行全面系统地评估,由此使得科研课题的立项及评估成为科研管理的主要工作内容。现阶段,国内的科研课题立项采用的是申请审批制,具体的流程是:由科研机构的相关人员负责提出申请,然后再由科技主管部门从申请中进行筛选,经过业内专家的评审论证之后,择优选取科研项目的承接单位。在进行科研课题立项的过程中,涉及诸多方面的内容,具体包括申请单位、课题的研究领域、经费安排、主管单位以及评审专家等。通过调查发现,由于国家宏观调控政策的缺失,导致科研立项中存在低水平、重复性研究的情况,从而造成大量的研究经费浪费,所取得的研究成果也不显著。科研管理部门虽然建立了相对完善的数据库系统,并且系统也涵盖与项目申请、审评等方面有关的基本操作流程,如上传项目申报文件、将文件发给相关的评审专家、对评审结果进行自动统计等。从本质的角度上讲,数据库管理系统所完成的.这些工作流程,就是将传统管理工作转变为信息化。故此,应当对已有的数据进行深入挖掘,从而找出其中更具利用价值的信息,据此对科研立项进行指导,这样不但能够使有限的科技资源得到最大限度地利用,而且还能使科研经费的使用效益获得全面提升。在科研立项阶段,可对数据挖掘技术进行合理运用,借此来对课题申请中涉及的各种因素进行挖掘,找出其中潜在的规则,为指标体系的构建和遴选方法的选择提供可靠依据,最大限度地降低不合理因素对课题立项带来的影响,对确需资助的科研项目进行准确选择,并给予相应的资助。在科研立项环节中,对数据挖掘技术进行应用时,可以借助改进后的apriori算法进行数据挖掘,从中找出关联规则,在对该规则进行分析的基础上,对立项的合理性进行评价。
项目管理是科研管理的关键环节,为提高项目管理的效率和水平,可对数据挖掘技术进行合理运用。在信息时代到来的今天,计算机技术、网络技术的普及程度越来越高,国内很多科研机构都纷纷构建起了相关的管理信息系统,其中涵盖了诸多的信息,如课题、科研人员、研究条件等等,而在这些信息当中,隐藏着诸多具有特定意义的规则,为找出这些规则,需要借助数据挖掘技术,对信息进行深入分析,进而获取对科研项目有帮助的信息。由于大部分科研管理部门建立的科研管理信息系统时间较早,从而使得系统本身的功能比较单一,如信息删减、修改、查询、统计等等,虽然这些功能可以满足对科研课题进展、经费使用等方面的管理,但其面向的均为数据库管理人员,处理的也都是常规事务。而从科研课题的管理者与决策者的角度上看,管理信息系统这些功能显然是有所不足的,因为他们需要对历史进行分析和提炼,从中获取相应的数据,为决策和管理工作的开展提供支撑。对此,可应用数据挖掘技术的olap,即数据库联机分析处理,由此能够帮助管理者从不同的方面对数据进行观察,进而深入了解数据并获取所需的信息。利用olap可以发现多种于科研课题有关信息之间的内在联系,这样管理者便能及时发现其中存在的相关问题,并针对问题采取有效的方法和措施加以应对。运用数据挖掘技术能够对科研项目的相关数据进行分析,找出其中存在的矛盾,从而使管理工作的开展更具针对性。
3结论。
综上所述,科研管理是一项较为复杂且系统的工作,其中涵盖的信息相对较多。为此,可将数据挖掘技术在科研管理中进行合理应用,对相关信息进行深入分析,从中挖掘出有利用价值的信息,为科研管理工作的开展提供可靠的依据,由此除了能够确保科研项目顺利进行之外,还能提高科研管理水平。
参考文献:。
[3]丁磊.数据挖掘技术在高校教师科研管理中的应用研究[d].大连海事大学,.。