首页 > 工作范文 > 范文大全 >

2024年实际问题与一元二次方程说课稿热选汇总8篇

网友发表时间 3144796

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“2024年实际问题与一元二次方程说课稿热选汇总8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

2023年实际问题与一元二次方程说课稿【第一篇】

学生在七年级和八年级已经学习了一元一次方程、二元一次方程,以及一次函数的相关知识及应用,在九年级学习了一元二次方程的相关解法,初步体会了一元二次方程在解决实际问题中的.具体应用,可以说一元二次方程是以前学过的方程知识的延续和深化,它在现实生活以及数学中有着广泛的应用,也是学习其他数学知识(如二次函数等)的基础.

作者:童孝彬作者单位:南京市共青团路中学,江苏,南京,210000刊名:考试周刊英文刊名:kaoshizhoukan年,卷(期):“”(6)分类号:g63关键词:

2023年实际问题与一元二次方程说课稿【第二篇】

由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.

教学目标。

掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.

通过复习二元一次方程组等建立数学模型,并利用它解决实际问题,引入用“倍数关系”建立数学模型,并利用它解决实际问题.

重难点关键。

1.重点:用“倍数关系”建立数学模型。

2.难点与关键:用“倍数关系”建立数学模型。

教学过程。

一、复习引入。

(学生活动)问题1:列方程解应用题。

下表是某一周甲、乙两种股票每天每股的收盘价(收盘价:股票每天交易结果时的价格):。

星期一二三四五。

甲12元元元元元。

乙元元元元元。

老师点评分析:一般用直接设元,即问什么就设什么,即设这人持有的甲、乙股票各x、y张,由于从表中知道每天每股的收盘价,因此,两种股票当天的帐户总数就是x或y乘以相应的每天每股的收盘价,再根据已知的等量关系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式.

解:设这人持有的甲、乙股票各x、y张.

则解得。

答:(略)。

二、探索新知。

上面这道题大家都做得很好,这是一种利用二元一次方程组的数量关系建立的数学模型,那么还有没有利用其它形式,也就是利用我们前面所学过的一元二次方程建立数学模型解应用题呢?请同学们完成下面问题.

老师点评分析:直接假设二月份、三月份生产电视机平均增长率为x.因为一月份是1万台,那么二月份应是(1+x)台,三月份应是在二月份的基础上以二月份比一月份增长的同样“倍数”增长,即(1+x)+(1+x)x=(1+x)2,那么就很容易从第一季度总台数列出等式.

去括号:1+1+x+1+2x+x2=。

整理,得:x2+=0。

解得:x=10%。

答:(略)。

以上这一道题与我们以前所学的'一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.

例1.某电脑公司20xx年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.

分析:设这个增长率为x,由一月份的营业额就可列出用x表示的二、三月份的营业额,又由三月份的总营业额列出等量关系.

解:设平均增长率为x。

则200+200(1+x)+200(1+x)2=950。

整理,得:x2+=0。

解得:x=50%。

答:所求的增长率为50%.

三、巩固练习。

(2)某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x,可列出方程为__________.

四、应用拓展。

例2.某人将20xx元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.

分析:设这种存款方式的年利率为x,第一次存20xx元取1000元,剩下的本金和利息是1000+20xxx・80%;第二次存,本金就变为1000+20xxx・80%,其它依此类推.

解:设这种存款方式的年利率为x。

整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0。

解得:x1=-2(不符,舍去),x2===%。

答:所求的年利率是%.

五、归纳小结。

本节课应掌握:。

六、布置作业。

1.教材p53复习巩固1综合运用1.

2.选用作业设计.

作业设计。

一、选择题。

年一月份越南发生禽流感的养鸡场100家,后来二、三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x,依题意列出的方程是().

(1+x)2=(1+x)+100(1+x)2=250。

(1-x)2=(1+x)2。

2.一台电视机成本价为a元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台售价为().

a.(1+25%)(1+70%)a元%(1+25%)a元。

c.(1+25%)(1-70%)a元d.(1+25%+70%)a元。

3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降低的百分数)不得超过d%,则d可用p表示为().

二、填空题。

1.某农户的粮食产量,平均每年的增长率为x,第一年的产量为6万kg,第二年的产量为_______kg,第三年的产量为_______,三年总产量为_______.

2.某糖厂20xx年食糖产量为at,如果在以后两年平均增长的百分率为x,那么预计20xx年的产量将是________.

3.我国政府为了解决老百姓看病难的问题,决定下调药品价格,某种药品在涨价30%后,20xx年降价70%至a元,则这种药品在年涨价前价格是__________.

三、综合提高题。

1.为了响应国家“退耕还林”,改变我省水土流失的严重现状,20xx年我省某地退耕还林1600亩,计划到20xx年一年退耕还林1936亩,问这两年平均每年退耕还林的平均增长率2.洛阳东方红拖拉机厂一月份生产甲、乙两种新型拖拉机,其中乙型16台,从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐年递增,又知二月份甲、乙两型的产量之比是3:2,三月份甲、乙两型产量之和为65台,求乙型拖拉机每月的增长率及甲型拖拉机一月份的产量.

3.某商场于第一年初投入50万元进行商品经营,以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.

(1)如果第一年的年获利率为p,那么第一年年终的总资金是多少万元?(用代数式来表示)(注:年获利率=×100%)。

(2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.

答案:。

一、。

二、(1+x)6(1+x)26+6(1+x)+6(1+x)2。

(1+x)2t。

3.

三、1.平均增长率为x,则1600(1+x)2=1936,x=10%。

2.设乙型增长率为x,甲型一月份产量为y:。

即16x2+56x-15=0,解得x==25%,y=20(台)。

3.(1)第一年年终总资金=50(1+p)。

(2)50(1+p)(1+p+10%)=66,整理得:p2+=0,解得p=10。

2023年实际问题与一元二次方程说课稿【第三篇】

随着核心素养的提出,作为一直奋战在一线的一名教师,对自己的课堂应该提出一个更高的要求,应该把培养孩子的们的数学核心素养作为一节课的目标。通过本节课的教学,总体感觉达到了自己预期的一个教学目标,但还有很多不足之处,现从收获和不足两个方面加以说明。

本节课的收获。

1整节课的整体设计能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,活跃了课堂气氛。

2总体上较好的达到了教学的目标,课后通过作业和练习做了一个统计,孩子对知识的理解达到78%,作业的正确率达到65%。

3本节课例题的设置比较贴合实际、例题由易到难,孩子容易接受和理解。

4本节课的教学方法主要以提问―讨论―总结的形式进行,更利于孩子的发挥。

5本节课在课堂的设置上更注重孩子“数学抽象”能力的培养,并在能力培养的过程中注重方法,以实例为载体,循序渐进让孩子逐步接受,自然生成结论,这样培养能力的过程孩子更易接受,理解更深刻。

本节课的不足。

1、在课堂时间的把控上做得还是不够好,由于孩子的能力层次不齐,所以在分组讨论过程中为了让更多的'孩子能够给掌握讨论的结论,给孩子们讨论留的时间多了一些,最后在做课堂总结的时候做得很草率,甚至最后拖堂,最后利用数学的自习课给孩子做了补充,。

2、在第2道例题的讲解过程中,没有板书的一个落实,让很多孩子在例3练习时书写过程出了很多问题。

3、在给孩子设置的问题很单一,没有涉及更多的问题的变化,当然这是我预期就想到的,主要还是考虑到了多数孩子的接受能力。

以上就是我在本次实践案例中的收获以及感觉到的不足,如有不当之处,望能不吝赐教!

2023年实际问题与一元二次方程说课稿【第四篇】

一方面新课程要求培养学生应用数学的意识与能力,作为数学教师,我们要充分利用已有的生活经验,把所学的数学知识用到现实中去,体会数学在现实中应用价值。

这节课是“列一元二次方程解应用题(1)”,讲授在几何问题中以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题。这类注重联系实际考查学生数学应用能力的问题,体现时代性,并且结合社会热点、焦点问题,引导学生关注国家、人类和世界的命运。既有强烈的德育功能,又可以让学生从数学的角度分析社会现象,体会数学在现实生活中的作用。

通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的`主体作用,以现实生活情境问题入手,激发了学生思维的火花,具体我以为有以下几个特点:

一、本节课第一个例题,是传播问题中的一个典型例题,我在引导学生解决此题之后,总结了解一元二次应用题的步骤。不仅关注结果更关注过程,让学生养成良好的解题习惯。

二、练习1是例题1的变式与提高,练习2是例题2的变式与提高。通过变式训练,让学生由浅入深,由易到难,也让学生解决问题的能力逐级上升,这是这节课中的一大亮点。在讲完例题的基础上,将更多教学时间留给学生,这样学生感到成功机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流、相互学习,共同提高。

三、在课堂中始终贯彻数学源于生活又用于生活的数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。

四、课堂上多给学生展示的机会,比如我所设计练习题可用不同方法去求解,让学生走上讲台,向同学们展示自己的聪明才智。同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。总之,通过各种启发、激励的教学手段,帮助学生形成积极主动求知态度,课堂收效大。

五、需改进的方面:

3、下课后很多学生和老师沟通课上一生的错误问题,但他们上课并不敢提出,有点却场,所以平时要培养学生敢想敢说敢于发表个人的不同见解的学风。

2023年实际问题与一元二次方程说课稿【第五篇】

朱老师在出示例题信息后,先画出一条线段表示“裤子的价钱”,并让学生思考“如何表示出上衣的价钱”。之后让学生动手尝试画一画,在全班交流的过程中展示了学生的不同画法,辨析哪种画法比较合理,哪种画法简单。这样以来,课堂气氛活跃了,课堂上时而有静静地思考,时而有小手如林的场面,难点也不攻自破。在这些比较中,学生很快便发现“表示3倍”的线段,每一段都得和表示裤子价钱的长度一样长。为了能一眼看出数量间的关系,两条线段的左端还是应该对齐。当然,这样的教学占据了大部分的课堂教学时间,有些内容是不用让学生去尝试发现的,如表示“上衣和裤子一共多少钱”。

教时可以从这四方面进行修改:

1、删去复习环节。探索线段图这一环节和第一部分看图列式结合起来设计进去,只是应该更精细,如何展示学生的画法,如何在有效的时间内把关键处讲解明白。这些都值得进一步思考。

2、在图上表示出问题这一步可省去让学生探究的步骤,而改为由教师直接讲授,可以节约一些教学时间,也没必要去探究。

3、讲完例题后,教师应带领学生回顾解决问题的思考过程,形成解决此类问题的一个策略,真正提升思维层次。

4、练习设计分为两层:一是看线段图列式计算,二是根据题目先画图再列式。

2023年实际问题与一元二次方程说课稿【第六篇】

一、课前预习:

1、某厂今年1月份的总产量为100吨,平均每月增长20%,则:。

二月份总产量为____________吨;三月份总产量为____________吨。(填具体数字)。

2、某厂今年1月份的总产量为500吨,设平均每月增长率是x,则:

二月份总产量为____________吨;三月份总产量为____________吨。(填含有x的式子)。

3、某种商品原价是100元,平均每次降价10%,则:第一次降价后的价格是________元;第二次降价后的价格是_______元。(填具体数字)。

4、某种商品原价是100元,平均每次降价的百分率为x,则:第一次降价后的价格是________元;第二次降价后的价格是_______元。(填含有x的式子)。

2023年实际问题与一元二次方程说课稿【第七篇】

学习一元二次方程的解法,最终是要落实到它的应用上。本节课通过学习列一元二次方程解应用题,解决两类问题:面积问题及增长率问题,使学生体验“知识来自实践,又作用于实践”的辩证唯物主义观点。史老师围绕这一知识应用开展课堂教学。现就本节课的课堂教学评价如下:

首先,从教学目标制订来看,本节课的教学目标是掌握列一元二次方程解应用题的一般步骤:审--设--列--解--验--答;学会列一元二次方程解应用题。学会寻找增长率问题中的等量关系;了解数学源于生活,从数学的无穷奥秘,感受生活的丰富多采。培养学生理解问题、解决问题的能力。

这一目标比较全面、具体、适宜,能从知识、能力、思想情感等几个方面确定,并且知识目标有量化要求,能力、思想情感目标要有明确要求,体现学科特点。同时确定的教学目标,能以大纲为指导,体现年级、单元教材特点,符合学生年龄实际和认识规律,难易适度。从目标达成来看,教学目标体现在每一教学环节中,教学手段都紧密地围绕目标,为实现目标服务。

史老师对这一节课的知识教授比较准确科学,教师在教材处理上做了一些文章,从课前学习配备一定量的复习练习,回忆巩固列方程解应用题的一般步骤,通过模仿练习,提升学习的量,并在教法选择上突出了重点,突破了难点,抓住了关键。

(一)看教学思路设计。

教学思路是教师上课的脉络和主线,它是根据教学内容和学生水平两个方面的实际情况设计出来的。它反映一系列教学措施怎样编排组合,怎样衔接过渡,怎样安排详略,怎样安排讲练等。

因此史老师在教学思路设计上符合教学内容实际,符合学生实际,并设计合作与探究给学生以新鲜的感受,在课堂上教学思路实际运作的效果比较好。

(二)看课堂结构安排。

教学思路侧重教材处理,反映教师课堂教学纵向教学脉络,而课堂结构侧重教法设计,反映教学横向的层次和环节。它是指一节课的教学过程各部分的确立,以及它们之间的联系、顺序和时间分配。课堂结构也称为教学环节或步骤。

1、从教学环节的时间分配看,本节课前面时间安排多,内容多,后面时间少,内容密度大,讲与练时间搭配还不够合理,讲地多,练得少。

2、从教师活动与学生活动看,占用时间过多,学生活动时间不够多。

3、从学生的个人活动时间与学生集体活动时间的分配看,学生个人活动,小组活动和全班活动时间分配不够合理,集体活动过多,学生个人自学、独立思考、独立完成作业时间不够。

4、从优差生活动时间看,学生情况我们不是很熟悉,难以判断。

5、从非教学时间看,史老师控制较好,基本没有浪费宝贵的课堂时间的现象。

什么是教学方法?它包括教师“教学活动方式,还包括学生在教师指导下”“学”的方式,是“教”的.方法与“学”的方法的统一。

一种好的教学方法总是相对而言的,它总是因课程,因学生,因教师自身特点而相应变化的。也就是说教学方法的选择要量体裁衣,灵活运用。本节课采用任务驱动下的学生自主学习与教师辅导相结合的模式,设计思路较好,具体实施时仍旧感觉到传统教法占优。

现代化教学呼唤现代化手段。“一支粉笔一本书,一块黑板一张嘴”的陈旧单一教学手段应该成为历史。本节课适当运用了投影仪、计算机等现代化教学手段,提高了课堂的容量。

1、看板书。

字迹工整美观,板画娴熟。因书写地方少,体现不出教师的真实水平。

2、看教态。

据心理学研究表明:人的表达靠55%的面部表情+38%的声音+7%的言词。教师课堂上的教态应该是明朗、快活、庄重,富有感染力。仪表端庄,举止从容,态度热情,热爱学生,师生情感交融。这一方面对我们每一个教师都应该加强。

3、看语言。

教学也是一种语言的艺术。教师的语言有时关系到一节课的成败。史老师语言准确清楚,说普通话,精当简炼,有启发性。教学语言的语调高低适宜,快慢适度,富于变化。

4、看教法。

史老师运用教具,操作投影议、微机等比较熟练。

课堂效果评析包括以下几个方面。一是教学效率高,学生思维活跃,气氛热烈。二是学生受益面大,不同程度的学生在原有基础上都有进步。知识、能力、思想情操目标达成。三是有效利用45分钟,学生学得轻松愉快,积极性高,当堂问题当堂解决,学生负担合理。应该说本节课基本达到了预期的教学效果。

2023年实际问题与一元二次方程说课稿【第八篇】

张老师这节课从学案的编写到实施,在形式和内容上都体现了新课程改革的特征,符合新课标的基本精神,展示了新课程理念,采用了新课堂模式。针对这节课我着重从以下几个方面谈谈个人的意见。

教学方法是实现教学目标,体现教学内容的手段,教学方法运用是否得当,主要看能否充分发挥教师的主导作用和学生的主体地位,能否最大限度地提高课堂教学效率。本堂课教师在处理好数学知识结构与学生认知结构的关系的基础上,按由易到难的顺序安排教学内容,注重思想训练与思维能力的培养。课堂上学生紧紧围绕着学案结合老师的指导,展开自主的学习。在引导学生得出用配方法来解一元二次方程方法步骤后,接着引导学生加强训练,对出现的问题立即进行矫正并反思总结,不但能提高学生运算能力,而且对培养学生养成良好的学习习惯起到很大的作用。

教学内容规定着教什么和学什么的问题,恰当地选择和处理教学内容是实现教学目标的重要保证。这节课从本节课的教学内容始终围绕目标、反映目标,能分清主次,准确地确定让学生明白如何利用配方法来解一元二次方程,以及利用配方法来解一元二次方程方法步骤这一重点、难点、关键点,处理好新旧知识的结合点,抓住知识的生长点。讲授具有启发性、层次性、详略得当;本堂课师生互动,共同探索,结合多媒体较好地处理了这个重点。同时,注意发挥练习题的作用,加强对学生解题方法和过程的指导,使传授知识和培养能力容为一体。通过对问题的处理,学生在不知不觉中得到了用配方法解一元二次方程的方法,真可谓潜移默化、水到渠成。

本节课始终以如何用配方法解一元二次方程为主线加强对学生知识、技能、方法、能力等的培养,目标的达成,达到了比较理想的程度。在课堂结构上堂体现了自主、合作、检测的主体框架,严谨顺畅,理念新颖,课堂营造的`学习氛围比较轻松活泼;内容上,新旧知识的前后联系,多种解法系统而完整,学到了新知识,还让学生体验到了成功的快乐。教学中灵活使用多媒体资源,提高了教学效果也是本节课的一个亮点。

本节课针对学科特点,结合本课内容,制定了明确的教学目标,而且在这堂课中顺利的完成了目标,使学生学会用配方法解一元二次方程方法,做到理解其算理,掌握其算法;并进一步培养学生观察比较、分析、综合的能力,进一步提高学生的计算能力,培养思维的灵活性。同时还培养学生参与数学学活动的积极性,体验在学习活动中探索和创造的乐趣,感受数学的严谨性、数学结论的确定性,养成认真仔细的良好学习习惯。本节课教学目标明确,教学过程始终围绕这个目标展开,重点内容的教学得到保证,重点知识和技能得到巩固和强化。而教学效果是课堂教学的落脚点。张老师这节课不但在规定的时间内完成了教学任务而且在知识的传授、能力的培养、思想与道德教育等方面都实现了目标要求,在学生的方面,学生听课的注意力非常集中,他们学习积极而主动,能准确地完成课堂练习,能对一堂课归纳出主要内容,独立的进行课堂小结与反思,并对自己的学习情况进行准确的自我评价等。

本节课基本能做到“以学生的发展”为本,使数学教育面向全体学生,不同的人在数学上得到不同的发展,这也是当前数学教学改革的重要课题之一,这节课如果能适当分层照顾全体,注重知识的形成过程,注重思维品质的培养,使每一位学生都有所获都有所得,是每一个学生都得到不同的发展,那么这节课就更加精彩。

相关推荐

热门文档

48 3144796