人教版八年级数学教案汇聚【热选5篇】
【导读预览】此篇优秀范文“人教版八年级数学教案汇聚【热选5篇】”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!
人教版八年级数学教案【第一篇】
1、内容
正比例函数的概念。
2、内容解析
一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验。
对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征。
本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式。
基于以上分析,确定本节课的教学重点:正比例函数的概念。
1、目标
(1)经历正比例函数概念的形成过程,理解正比例函数的概念;
(2)能根据已知条件确定正比例函数的解析式,体会函数建模思想。
2、目标解析
达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念。
达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想。
正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的`每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念。对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度。
因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程。
人教版八年级数学教案【第二篇】
学会可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解、掌握解分式方程的一般步骤。
去分母法解可化为一元一次方程或一元二次方程的分式方程、验根的方法、
解分式方程的一般步骤。
1、什么叫分式方程?
2、解分式方程的基本思想:
分式方程整式方程
3、解方程(学生板演)
1、由上述学生的板演归纳出解分式方程的一般步骤
(1)去分母:在方程的两边都乘以最简公分母,化为整式方程;
(2)解这个整式方程;
2、范例讲解
(学生尝试练习后,教师讲评)
例1:解方程例2:解方程例3:解方程讲评时强调:
1、怎样确定最简公分母?(先将各分母因式分解)
2、解分式方程的步骤、
巩固练习:p1471t,2t、
课堂小结:解分式方程的一般步骤
布置作业:见作业本。
人教版八年级数学教案【第三篇】
(一)知识教学点
1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用。
2.使学生理解判定定理与性质定理的`区别与联系。
3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理。
1.通过“探索式试明法”开拓学生思路,发展学生思维能力。
2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力。
通过一题多解激发学生的学习兴趣。
通过学习,体会几何证明的方法美。
构造逆命题,分析探索证明,启发讲解。
1.教学重点:平行四边形的判定定理1、2、3的应用。
2.教学难点:综合应用判定定理和性质定理。
(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理).
人教版八年级数学教案【第四篇】
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量。
2、会求一组数据的极差。
1、重点:会求一组数据的极差。
2、难点:本节课内容较容易接受,不存在难点.
从表中你能得到哪些信息?
比较两段时间气温的高低,求平均气温是一种常用的方法.
这是不是说,两个时段的气温情况没有什么差异呢?
根据两段时间的气温情况可绘成的折线图.
观察一下,它们有区别吗?说说你观察得到的结果.
本节课在教材中没有相应的例题,教材p152习题分析
问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。
人教版八年级数学教案【第五篇】
本课(节)课题 认识直棱柱第 1 课时 / 共 课时
教学
目标(含重点、难点)及设置依据教学目标
1、了解多面体、直棱柱的有关概念.2、会认直棱柱的侧棱、侧面、底面.
3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.
教学重点与难点
教 学 过 程
内容与环节预设、简明设计意图二度备课(即时反思与纠正)
一、创设情景,引入新课
析:学生很容易回答出更多的答案。
师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。
二、合作交流,探求新知
1.多面体、棱、顶点概念:
2.合作交流
师:以学习小组为单位,拿出事先准备好的几何体。
学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描
述其特征。)
师:同学们再讨论一下,能否把自己的语言转化为数学语言。
学生活动:分小组讨论。
说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。
师:请大家找出与长方体,立方体类似的物体或模型。
析:举出实例。(找出区别)
师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
长方体和正方体都是直四棱柱。
3.反馈巩固
完成“做一做”
析:由第(3)小题可以得到:
直棱柱的相邻两条侧棱互相平行且相等。
4.学以至用
出示例题。(先请学生单独考虑,再作讲解)
析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)
最后完成例题中的“想一想”
5.巩固练习(学生练习)
完成“课内练习”
三、小结回顾,反思提高
师:我们这节课的重点是什么?哪些地方比较难学呢?
合作交流后得到:重点直棱柱的有关概念。
直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。
板书设计
作业布置或设计作业本及课时特训