首页 > 学习资料 > 小学教案 >

四年级下册数学教案【最新4篇】

网友发表时间 3157954

【阅读指引】阿拉题库网友为您分享整理的“四年级下册数学教案【最新4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

四年级下册《优化》数学教案【第一篇】

《系统优化》教学设计

过程与方法:通过讨论、案例分析,使学生懂得用所学的知识解决有关问题

情感态度与价值观:体验系统优化的意义,指导学生把系统优化的思想延伸到整个生活和学习当中。

一、教学重点与难点:

重点:系统最优化方法和一般性步骤

难点:系统优化的过程分析

教学准备:多媒体

二、教学流程:

中马 : 上马

下马 : 中马

“城西干道从大桥南路到赛虹桥立交桥,是南京市贯穿城市交通的大动脉。城西干道全线贯通于2000年,因为有了城西干道,许多从大桥过来的车辆不必经过市中心就可以便捷地通过包括城西干道在内的绕城公路通行。

城西干道的出现,除了带来交通便捷,也给沿线的数十万市民带来了噪音之苦。从大桥经过城西干道的大多数是重型载货车和大客车,而且城西干道的每天的车流量非常大。据调查,白天畅通时城西干道上的车辆平均时速为80迈,晚上可以达到100迈。重量大、速度快是城西干道上车辆的一大特点,车身和空气的摩擦声、发动机马达声是噪音的主要。

城西干道沿线分布着大量的居民区,按照国家相关环保划分标准,这些居民区属于商业、居民、文教混合区,白天最大噪音值是60分贝,晚上最大噪音值是50分贝。但是两边的居民区噪音全线超标,在离高架不到15米的重噪音区圣淘沙花城19楼的一户人家,更是测出了开窗峰值分贝、谷值分贝,关窗峰值分贝、谷值分贝的超标噪音。长期生活在噪音中,人的健康会受到损害,可能导致心血管疾病和神经系统疾病。

城西干道沿线不仅有民居还有学校,有的学生戴耳机睡觉;老师上课用喇叭讲课;有的学生说:“在城西干道边上住了4年,记得刚进校的时候整整一个星期就没睡着觉。后来终于慢慢习惯了,如今到了夜里打雷都不醒,只是时常觉得精神疲劳、头疼,还有点健忘。”噪音已经伤害到这些学生的神经系统。

21世纪的城市人居环境不仅要讲究安逸更要讲究健康,现在正在建的城东干道高架已经做了隔音墙的规划,希望有关部门能考虑到城西干道沿线众多居民区和学校的存在,也在这一区域安装隔音墙,免去市民的噪音之苦。”

教师:问题提出来了,怎样能够改善城西干道周围附近噪音的污染,优化居民楼、学校等大环境系统。

学生3:降低车体本身的噪音;

学生4:让车流在此路段减速通过;

学生5:让车道远离学校……

学生6:修建隔音墙√

教师:隔音墙作用的本质是改变噪音的传播途径,以达到改善污染的目的。

但对于类似于香港城市高楼林立的情况,再高速公路两侧如果修建隔音墙必须修得很高才可以,如果墙修得太高,那么抗风暴的能力就会大大减弱,为增加抗风暴能力,选材时就会大大提高成本,这样修建隔音墙就不是合适的优化方法。

教师:系统优化的意义就是以最小的投入,获取系统的最佳效益或最佳功能。

再举例:

如:在蔬菜、西瓜的种植中,要使蔬菜防病和提高产量,要使西瓜抗御低温的能力,就应采用嫁接技术,这是一项增产增收的栽培技术,嫁接的西瓜比自根西瓜增产1倍以上。

如:建筑材料的改进也是一项优化技术,以往建筑物的墙体多采用实心砖,现在采用了空心砖,在保证强度、隔热隔音效果的同时,节省了材料。

教师:对于比较复杂的系统,人们对其特征了解不够,所以需要运用一定的数学的手段描述它,进而找到合适的解决方案。

在前一节的学习中,我们就曾接触到数学模型的问题,比如 龙舟赛艇案例分析中,可以根据牛顿第二定律进行定量描述a=F/,这就是一个描述运动特性的数学模型 。

系统建模的`目的是要将系统的原型抽象为数学模型,并运用已有的数学方法分析求解得出数学结论,再运用这一结论来解决实际系统中的问题。

案例2:

在江边一侧有A、B两个厂,它们到江边的距离分别是2和3,设两厂沿江方向的距离是,现在要在江边修建一个码头,使得两厂的产品能够顺利过江,问码头应建在什么位置,才能使运输路线最短?

本问题属于系统的优化问题。

学生分析:

根据要求可画出上图,在江边DE上求一点C,使C到A、B两厂的距离之和为最短。

数学模型为: Sin=AC+BC

过A点作关于直线DE的对称点A1,连接A1B与DE相交于C,这一点既为所求的码头的地点。

根据相似三角形原理,求得 DC=,码头建在与A厂到江边垂直距离位置相距处,运输路线最短。

教师:

三、总结:

1、 系统优化的一般性步骤

①提出需要优化的问题;

如:城西干道噪音污染问题就是需要进行优化的问题;码头的选址也是一个系统优化问题。

②需要收集有关资料和数据,确定变量、建立定量计算方程(数学模型)和约束条件,选择合适的最优化方法

如:具体测量噪音的严重程度;为保持方案可行,必须勘测、预算;建立隔音墙防噪音的数学模型及墙体参数条件,求解数学解;墙体结构与材料与定量计算有关;经费预算包括:购买器材、设备费用;外请工程设计与施工技术人员费用民工费用、机动调动费用……

③验证和实施。

条件校验:逐项校验修路工程所需的人力、物力、财力是否具备。

实施与调整:实施计划的过程

2、影响系统优化的因素

①优化追求的目标要适度。

②希望投入最小,而取得的效益最大

效/耗比 性/耗比 性/价比 (比值越大,就越接近或达到最优化)

③系统优化使离不开条件,条件是否具备直接影响优化。

④某些不确定的或不可预见的因素也会影响系统的优化。

3、最优化方法

最优化方法是系统学中的一个重要方法,它通常是指在一定的人力、物力和财力资源的条件下,使取得的效果(如生产产值、利润、效益等)达到最大,而投入(如能源、资金、人力、时间等)达到最小的一种方法。

①要用定性和定量分析相结合的方法是系统最优化

②坚持系统整体的最优化。运用好权衡理念,舍卒保车,弃车保帅,这是为了保证对弈的最终胜利。

③不间断地寻求最优化,系统的发展具有阶段性,系统的优化是具有相对性的,要遵循系统的动态观点,推动系统不断进步。

四、教学反思:

在教学过程中,以优化作为教学主线,以案例为载体,一步步分析展开,完成教学任务,达到教学目的。对隔音墙实例可以指导学生对确定的研究问题进行实地参观、测量、调查和向专家咨询,得到第一手材料后,再让学生进行讨论交流,在相互评价、自我评价过程中获得学习的乐趣。

数学四年级下册教案【第二篇】

教学目标:

一、知识技能

1、学生通过实例观察,认识直线、射线和线段以及了解它们的表示方法。

2、能正确区分直线、射线和线段,掌握它们的联系和区别。

二、过程方法

1、引导学生利用观察和实践活动,初步培养观察、比较和概括的能力。

2、通过观察,操作学习等活动,让学生经历直线、射线的形成过程,培养学生关于直线、射线和线段的空间概念。

三、情感态度

在自主探究、合作交流的过程中,培养学生的交流能力。培养学生用数学的眼光观察周围的事物及学习数学的兴趣。

教学重点:

理解直线、射线和线段的特点。

教学难点:

理解直线、射线和线段的区别和联系。

教学准备:

多媒体课件、直尺,手电筒、线

教学设计:

一、情境导入

同学们喜欢这部动画片吗?(课件出示熊大和熊二)

熊二在森林呆的太久了,想出去看看外面的世界,于是熊大就带着熊二一起去小镇看看。

从森林出发有三条路到达小镇,�

(3)这条线段的长度就是两点间的距离。

反问:另外两条路线的的长度是否是两点间的距离?

二、探索新知

1、进一步学习线段

课件出示一条线段

师:线段有几个端点?(生:两个)

师:我们现在给这两个端点做上记号,标出A、B两点。

板书:线段AB

师介绍:在数学上为了表示方便,可以用端点的字母来表示这条线段。例如:线段AB。你能用不同的字母表示这条线段吗?

学生尝试并交流

2、认识射线

(1)谈话:它们就沿着这条直直的线段路线一路走到了美丽的小镇,看到了美丽的夜景。观察这些美丽的光线有什么共同的特点?

课件展示美丽的夜景,教师引导学生观察分析,小结

(它们都由一点出发,直直的'射向远方,无限延伸。)

师:像这样只有一个端点,笔直的向一端无限延长的线,我们把它叫做射线。

板书:射线。

这些灯射出的光线都可以看作射线。

(2)电脑演示同时口述把线段的一段无限延长,就得到一条射线。

你会画射线吗?试着画一下。

学生试着画射线。

学生展示并说说自己是怎样画的。

师简单介绍射线的表示方法并小结射线的特点。

(3)举生活中射线的例子。

学生举例教师小结。

3、认识直线

现在仔细看屏幕我们继续学习,刚才我们把线段一端无限延长是射线

师:那如果把线段的两端都无限延长,你能想象出它是什么样的吗?

课件演示把线段的两端无限延长。

(同时想象一下两边无限延长,想象着向两边无限延长,延长出练习本,延长出学校,一直向宇宙中延长。)

教师小结:没有端点,向两端无限延长。我们把这样的线叫做直线。

你会画直线吗?

学生试着画直线并展示。

师将学生所画的直线变换位置,请学生思考它们是否还是直线?

师:你们准备怎么表示直线?

学生相互交流表示的方法。

师小结:只要具备了直线的特点,不管位置、角度怎么变动,都是直线。直线可以像线段一样表示,还可以用小写字母表示。例如直线AB或直线l。

大家画一画。

4、大家认识了射线、直线和我们以前学的线段,直线、射线与线段相比有异同点呢?

集体交流,教师小结。

课件展示:

三者联系:都是直线的一部分。

四年级下册数学教案【第三篇】

教材分析:

这是一节 根据有关平面图形特点进行观察、操作、思考和简单设计的实践活动。教材分三部分安排:第一部分,通过观察生活中常见的用砖铺成的地面或墙面,初步理解什么是图形的密铺。第二部分通过动手操作和思考,探索三角形和四边形能否进行密铺。并了解能够进行密铺的平面图形的特点,知道有些平面图形可以密铺,而有些则不能;从而在活动中进一步体会密铺的含义,更多地了解有关平面图形的特征。第三部分,通过欣赏和设计简单的密铺图案, 进一步感受图形密铺的奇妙,获得美的体验。并能够对自己在活动中的表现进行自我评价和反思。

学情分析:

(1)知识水平:学生已经学习了图形的平移、旋转及多边形的内角和等知识;具有了相关的知识经验;

(2)能力和方法水平:学生已经具备一定的推理能力,能初步运用“猜想--验证--归纳”的数学思想方法来探究问题;

(3)心理水平:该阶段的学生虽然已经具备一定的知识经验,但是还是有较强的好奇心,也有较强的表现欲;

(4)思维水平:学生的思维以直接经验为主,间接经验相对较少。在学习过简单平面图形的基础上,学生已经对平面图形有了初步的印象,并能准确的认识各种简单平面图形。对于密铺,学生已经有了较为直观的生活体验,只是还未形成系统的理论知识。

在此基础上进行密铺理论知识的学习和活动设计,符合学生认知发展规律,是对学生生活经验的提炼和再加工,从而形成较为系统的初步抽象的理论知识。在这个知识系统的帮助下 ,可以进一步让学生认识到数学的美,激发对数学学习的兴趣,是对学生进行的一次头脑风暴,对于培养学生的数学应用意识有很大的帮助。基于以上认识,本课的设计重 点放在让学生动手操作、探究,从而获得丰富的知识经验和积极的情感体验。学习过程中充分发挥小组长作用,小组内进行充分的交流讨论,通过经历与组内同伴动手拼图以及设计密铺图形等活动过程,知道三角形、四边形、正六边形可以密铺,并知道有些图形是不能密铺的。在整个活动中,教师参与到组内讨论,并指导。最后在学生活动和交流的基础上,教师组织学生进行评价、自我评价和反思,内化知识经验与知识体系。

教学目标:

1.知识与技能:通过观察生活中常见的密铺现象,使学生初步理解图形的密铺;通过拼摆各种图形,探索并了解能够进行密铺的平面图形的特点。

2.过程与方法:在探究多边形密铺条件的过程中学生经历观察、猜测、推理、验证和交流等过程。进一步发展学生的动手实践能力、合情推理能力。

3.情感态度价值观:使学生在欣赏密铺图案和设计简单的密铺图案的过程中,体会图形的转换,感受数学知识与生活的密切联系,经历欣赏数学美、创造数学美的过程,从而激发学生学习数学的兴趣,体验学习数学的价值。同时,进一步发展学生的团结合作意识,享受由合作获得成功的喜悦。

教学重点;知道什么是密铺,了解有一些图形(如三角形,四边形和正六边形)是可以密铺的。

教学难点:初步感受密铺的原理

教学手段:

基于以上几点的认识,本节课采用传统教学与信息技术相结合的教学手段,重点突出现代信息技术在数学教学课堂中的不可替代的作用。学生能够自主的在多媒体设备上完成自学或者是进行各种探究实验,是学生课堂主体地位的体现;教师在课中担任组织者、引导者与合作者的角色。但,由于每个孩子在信息技术方面的掌握层次不尽相同,所以为孩子们提供了多种渠道来探究解决问题,学生可以根据自己的能力完成自己的探究活动,并在活动中有不同的体验。

课前准备:

1、 信息技术准备:广播教学的教学系统,可以用来广播教学,也可以用来展示学生的电脑上的操作。信息技术的简单应用基础,学生能在计算机上实现对基本图形的平移和旋转。同时学生能在多媒体设备上完成对他人作品的欣赏与评价,同时也能对自己整个的活动过程进行评价反思。

2、 道具准备:剪刀、卡纸若干。

3、 素材准备:某客厅地面的照片。

教学过程:

一、谈话引入,揭示课题

1、教师与学生谈话,想了解学生家里的客厅地面是由什么铺成的。学生向全班同学介绍自己家客厅地面是由什么铺成的。

2、教师请学生用一个字或者是两个字来形容一下自己家里客厅的地面。学生单独汇报。(如:大/密/美丽/漂亮/宽敞/平整……)

3、教师出示从朋友家拍来的客厅的地面(两幅图),请学生欣赏。并问学生分别是由什么形状的地砖铺成的。(长方形和正方形)

4、教师问学生觉得这两家的客厅铺的怎么样。(如果学生说铺的好或者是铺的很平,就追问:好在哪里?平在哪里?并用手势提醒学生发现每块地砖之间是一块挨着一块的,也就是没有空隙的。如果没有说出没有重叠,就追问:有没有把两块地砖叠在一起?引导孩子发现没有重叠。)

5、揭示课题:我们把像这样,图形之间,没有空隙,也不重叠的铺法称为密铺。

设计意图本环节以谈话方式引入 ,从学生的身边去发现和感受密铺的存在,从而引出课题。

二、实验探究,领悟新知

(一)动手操作、感受密铺

1、教师请学生们观察“密铺”这一个词,问学生哪个字更重要。(学生回答“密”字更重要,教师及时追问:“密”怎么体现?引导学生发现“密”体现在没有空隙,不重叠。)

2、教师拿出几个长方形,请一个学生来试一试,看看能不能做到密铺。(一个学生在黑板上操作,其他学生认真观察。)

3、学生操作完以后,教师请学生观察有没有做到密铺,并追问是如何判断的。(学生会说出,是密铺,因为没有空隙,也不重叠。)

4、教师对学生们的善于观察和一学就会的宝贵品质进行肯定。

设计意图本环节通过再认“密铺”一词和请学生动手铺长方形,来帮助学生初步感受密铺。为后面的动手实验探究做铺垫。

(二)探究三角形能不能实现密铺之初步判定

1、教师追问学生:除了长方形和正方形以外,我们还学过什么图形?(三角形、圆、平行四边形、梯形……)

2、教师继续问学生三角形能不能实现密铺。并先让学生猜测。

3、教师提示学生:要知道三角形到底能不能密铺,可以怎么做。

4、学生说一说要验证三角形能不能密铺需要做哪些事。

5、教师引导学生按照一定的实验步骤来操作:

(学生猜能或者是不能,教师追问,要知道到底能不能,我们该怎么办呢?学生会说试一试或者是铺一铺,师再追问:拿什么试?拿什么铺?学生应该会回答:要准备几个三角形,然后再铺一铺。师再追问,准备的三角形需要完全一样吗?师:那我们就来按照这两个步骤实验一下:第一、取出①号信封里面的卡纸(如下图),沿着上面的线剪开,得到几个三角形;第二、把剪下来的较大的三角形(锐角三角形)放在一起铺一铺。(以上步骤由小组合作完成))

6、学生按照刚才所说的步骤小组合作完成,在学生完成的过程中教师给予一定的指导和帮助,并用IPad拍一组已经完成好的图片。

7、先请学生汇报实验结果,并追问学生是如何判断的。

设计意图本环节通过讨论如何判断三角形能否密铺到初步实验发现三角形可以密铺,为学生建立初步的表现。

(三)探究三角形能不能实现密铺之研究密铺原理

1、教师提出:如果把这些三角形随便的铺在一起,能密铺吗?如果不能,这到底跟三角形的什么有关呢 ?(学生发现和三角形的角有关)教师接着追问和三角形哪个角有关(学生进一步发现和三角形的三个角都有关系)。

2、师生共同提出:为了更好的区分这三个角,可以把三角形的三个角分别标上∠1、∠2、 ∠3。然后再放在一起铺一铺,看看有什么发现。(学生在标的过程中,引导学生把所有三角形的角都标出来,并且相同的角标上相同的序号)

3、学生再次铺一铺。在铺的 过程中适时引导学生观察拼接点处有几个角,分别是哪几个。

4、教师展示一组学生完成的密铺作品。并请学生认真观察一下,这个小组标完角以后,在拼接点处有几个角呢?

(6个角),哪6个角??这个角1就是老师黑板上的三角形的角1,这个角2就是老师黑板上的 三角形的角2,这个角3就是老师黑板上的三角形的角3,而∠1 、∠2、∠3就是这个三角形的三个内角。这个∠1、∠2、∠3也是这个三角形的三个内角。师再问,在这个拼接点处有几个角1?几个角2?几个角3?

教师小结:看来三角形真的可以实现密铺,而且和三角形的内角有关。

设计意图本环节通过讨论、探究,发现三角形能密铺是和三角形的三个内角都有关系的。让学生感知到三角形能够密铺并非偶然,这其中隐藏着一定的必然性。而这种必然性就是密铺的原理 所在。

(四)探究三角形能不能实现密铺之再次验证

1、教师问学生如果再用另外一种三角形来铺一铺,学生们想要怎么做。

2、学生思考,并提出可以先标出角,再铺一铺。

3、教师请学生把刚才剪下来的较小的三角形(钝角三角形)放在一起标一标,铺一铺。学生小组合作完成,师用IPAd拍一组完成好的。

4、教师先请学生判断这种三角形能不能密铺。再展示其中一组学生的作品。问学生这一次实验和之前的实验有什么不一样的地方,或者是有什么新发现。

5、学生发表自己的看法,教师进行总结。

小结:这样看来这一种三角形和前面一种三角形一样,也可以密铺,而且也和它的三个内角有着密切的关系。

设计意图本环节通过再一次的铺一铺的活动,让学生再次感受三角形是可以密铺 的,而且再次领悟三角形能密铺是和它的三个角有关的。

(五)探究四边形能不能密铺

1、教师引导学生:既然三角形能够实现密铺,那如果是这样的四边形能实现密铺吗?(师拿出一个不规则的四边形,贴到黑板上)

2、学生发表自己的看法,并提出:要知道能不能密铺,动手实验一下就行了。

3、教师请学生打开②号信封,取出里面的四边形动手铺一铺,并提醒学生思考动手铺之前可以先做什么。 (标角)

4、 学生根据教师的要求和提示动手实验,教师观察每一组完成的情况,并用IPAd记录其中一组完成的情况。对于已经铺完的小组,请学生在小组内议一议,看看有什么发现。

5、反馈:教师先请学生判断这样的四边形是否可以密铺。然后请学生说说有什么发现。

6、学生先判断是可以密铺的,因为这几个图形之间没有空隙也不重叠。并且发现拼接点处有4个角,而且这4个角分别是这个四边形的四个内角。如果有学生能发现这四个角加起来就是360°就更好了。

小结:通过这个实验我们发现,这种四边形也是可以密铺的,而且也与四边形的内角有关。

设计意图本环节在前面几次实验的基础上,大胆让学生自己猜测、验证。通过实验发现四边形是可以密铺的,而且和三角形一样,也和四边形的四个内角有密切的关系。

三、小结及拓展延伸

1、教师引导学生回顾:我们今天研究了密铺,知道了长方形可以密铺,正方形可以密铺,三角形可以密铺,四边形可以密铺。并提问学生:你还有什么问题想问呢?

2、学生提出新的问题,如梯形能不能密铺?五边形能不能密铺?六边形能不能密铺?……

3、教师清学生借助计算机操作来验证正五边形和正六边形是否能密铺。

4、学生小组合作完成。在学生完成的过程中教师给予一些指导和帮助。

5、学生操作完后,进行反馈,通过广播教学体系请其中的几组学生展示自己的实验结果。并请其他学生帮助判断。通过实验、讨论发现,正五边形不可以密铺,而正六边形可以密铺。

小结:这样看来并不是所有的平面图形都可以密铺的,有的可以密铺,有的不可以密铺。

设计意图本环节通过计算机实现人机交互操作,体现出现代信息技术在数学教学中的应用。通过在计算机上操作发现并不是所有的平面图形都可以密铺的,有的可以,有的是不可以的。

四:实践作业

用上今天所学的密铺的知识为你自己的家设计一款漂亮的地砖。

五:板书设计

密铺

图形之间,没有空隙,也不重叠。

廉洁汉语拼音【第四篇】

剖析材料庆典致辞举报信优秀名句的小结通知协议李商隐!单词师恩我活动策划问候语:学习方法表扬信策划书,辞职报告邀请函公文叙事。

相关推荐

热门文档

16 3157954