组合图形的面积教学设计【精编4篇】
【阅读指引】阿拉题库网友为您分享整理的“组合图形的面积教学设计【精编4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
组合图形的面积教学设计【第一篇】
[关键词]数学教学 问题驱动合作 问题设计 优化策略
[中图分类号] [文献标识码] A [文章编号] 1007-9068(2015)29-044
美国数学家哈尔莫斯曾指出:“问题是数学的心脏。”问题驱动是指用问题驱动学生学习,促使学生进行深入的思考,理解数学的本质。而问题驱动教学法是指在教师的指导下,以学生为中心的学习,是新课程倡导的教学方式之一。在用问题驱动教学法进行教学的过程中,教师起组织者、引导者、帮助者和促进者的作用。学生进行合作是为了解决问题,所以合作学习中的问题,其质量则是其中极为重要的一个因素。
一、设计的问题要有挑战性,使学生合作的欲望更强烈
合作学习中设计的问题如果过于简单,则无法激活学生的思维和使学生形成认知冲突,这样的合作是低效或无效的;反之,如果设计的问题过难,超出了学生的认知水平,即便给学生留有足够的时间去合作探究,他们还是很难找到解决问题的办法或得出结论,这样的合作也是低效或无效的。因此,教师设计学生合作学习中的问题要有一定的挑战性,遵循“难度大于个人能力,小于小组合力”的原则,即问题的设计要处于学生思维的“最近发展区”内,使学生独立研究面临一定的困难,而小组合作则基本能顺利解决。这样的问题才能有效激发学生合作的欲望,开发学生合作的潜能,实现真正意义上的合作学习。
例如,课堂教学中,在学生学会用画“正”字法进行统计后,教师提出这样的问题:“你能用画‘正’字法统计某路口某时间段内汽车、电瓶车、自行车的数量吗?”因路口车辆来往比较复杂,学生一个人边看车辆边统计数量,这是很难的,怎么办呢?如果安排两个学生,甚至四个学生分工合作,即一人观察车辆,按车型的不同依次报车名,另一人同时画“正”字统计,另两人为确保搜集数据的准确性也分别参与配合,这样的小组合作如何?学生顿时跃跃欲试,这样的合作一定会顺畅、高效。
又如,教学苏教版小学数学四年级下册综合实践课“怎样滚得远”时,教师设计了这样一个问题:“你知道斜坡与地面成什么角度时物体滚得最远吗?”这个问题必须通过实验来解决,而这个实验仅靠一个学生是难以完成的,必须多人分工合作。如一个学生用一块长约50厘米的木板在地面上搭一个斜坡,使斜坡与地面的角度分别为30度、45度、60度、90度;角度由另一个学生想办法确定且尽量固定住,以减少误差;第三个学生将胶带圈或其他圆柱形物体轻轻放在斜坡上,让它自动地往下滚;等物体停止滚动后,第四、第五个学生用卷尺从木板的底部开始量出物体在地面上滚动的长度。斜坡与地面的四个角度中任一个角度经过多次实验后,算出平均数,最后得出实验结果。这样的合作,学生的参与欲望很强,也极易得出正确的结论:当斜坡与地面成45度角时,物体滚得最远。
二、设计的问题要有开放性,使学生思维的活力更凸显
开放性问题的设计能激活学生的思维,使学生的自我价值得到认可。在合作学习的过程中,学生意识到自己不再是知识的“接收器”,在某种程度上,会觉得自己是知识的“发掘者”。设计的问题开放性越强,越能弥补学生个人解决问题时方法的局限性,越能激活学生的思维,越能让学生体验到合作学习中解决问题时策略的多样性、互补性,从而人人获得成就感,使学生对所学数学知识的理解更深刻。
例如,教学苏教版小学数学六年级上册“分数除以整数”时,教师提问:“五分之四除以2等于多少?”教师先让学生个人思考,再小组讨论。于是学生间的思维开始发生碰撞,课堂处处可见思维碰撞迸发出的美丽火花,时时突显思维的活力,最终得出以下方法:(1)把五分之四转化成小数再除;(2)根据商不变的性质,将被除数和除数同时乘5,转化成整数除以整数;(3)画线段图分析,4个五分之一平均分成2份,每份是2个五分之一,即五分之二;(4)除以2就是平均分成2份,每份是它的二分之一,转化成乘法解决。
又如,苏教版小学数学五年级上册“校园的绿化面积”中有这样一道题:“华丰小学校园里有一块草坪(如下图),它的面积是多少平方米?”教师及时启发学生解决问题的方法有很多,帮助学生打破思维的束缚,让思维更显活力。学生通过合作学习,得出以下五种方法:(1)长方形面积+梯形面积(如图①);(2)长方形面积+三角形面积(如图②);(3)梯形面积+三角形面积(如图③);(4)长方形面积-梯形面积(如图④);(5)梯形面积-三角形面积(如图⑤)。
在学生得出以上五种方法后,教师及时总结:“求组合图形的面积可以‘割’,也可以‘补’,不仅要尽量选择简单的方法,不能把图形分割得太碎,否则容易出错,而且要注意分割成的每个图形都要具备能计算出面积的条件,这些条件是已知,或是可求的。”……
以上两个教学案例充分说明,开放性问题的设计给学生的思维创造了一个更广阔的发展空间,对提高合作学习的有效性及培养学生的探究能力、创新能力有着十分重要的作用。
三、设计的问题要有层次性,使学生合作的效能更提升
教师设计讨论题时,既要注意讨论题之间有一定的内在联系,又要遵循由浅入深的逻辑规律。当问题的设计环环相扣、层层递进时,学生的合作必定会更密切,合作的效能必定会得到提升。
例如,教学苏教版小学数学五年级下册“和与积的奇偶性”时,教师设计以下合作讨论题:(1)奇数和奇数相加等于什么数?(2)偶数与偶数相加呢?(3)奇数和偶数相加呢?为什么?(4)几个数连加等于什么数?与奇数的个数有什么联系?为什么?(5)几个数相乘的积又有什么规律呢?为什么?这一组问题层层递进、环环相扣,学生有序地展开讨论,其难点也就迎刃而解了,这样的合作必定是有序且高效的。
又如,教学“排列组合规律”一课,在学生进行小组合作学习时,教师设计了这样一组难度适中、让学生“跳一跳,能摘到果子”的讨论题:“用2、3、5三个数字能组成多少个不同的三位数?”“如果把3改为4呢?”“如果把3改为0呢?”“如果把3改为5呢?”……教师不断地改变条件,有层次、有梯度地呈现问题,使学生合作学习的欲望变得更强烈,思维也更严谨,这样的合作学习肯定也是有序且高效的。
组合图形的面积教学设计【第二篇】
关键词:ADDIE模型;微课;微课设计
随着社会的不断发展进步,信息技术也在飞速的发展,在我们生活的各个方面都得到了广泛应用,尤其是在教育领域中的应用,使得教育发生了深刻的变化,出现一种新的教育资源――微课。微课是以阐释某一知识点为目标,以短小精悍的在线视频为表现形式,以学习或教学应用为目的的在线教学视频[1]。
当前,微课在我国的小学教育中的应用虽然取得了一定成绩,提高了学生学习的自主性和学习效率。但由于我国微课在教学的应用起步比较晚,缺乏科学的的微课设计方法。为此,笔者认为把ADDIE教学设计模型作为小学数学微课设计的模型,可以为微课的设计提供指导,从而设计一节质量高的微课。本文以人教版《组合图形的面积》为例来进行基于ADDIE模型的微课设计。
ADDIE是一套系统的教学设计模型。具体包括分析(Analysis)、设计(Design)、开发(Develop)、实施(Implement)、评价(Evaluate)五个阶段[2]。在ADDIE五个阶段中,分析与设计属前提,开发与实施是核心,评估为保证,三者互为联系,密不可分。具体如下图[3]:
1.分析阶段。分析阶段需要确定学习需求、学习者特征、学习内容及资源和约束条件。《组合图形的面积》是在根据学生在学习了长方形、平行四边形、正方形、三角形和梯形的面积计算方法的基础上进一步探讨研究如何计算组合图形的面积,也是日常生活中经常需要解决的问题。由于组合图形的讲解比较抽象,我们可以借助于微课,把通过“剪”、“移”、“拼”、“补”的方法解决多边形的面的积动态展示在学生的面前,同时学生也可以根据自身的实际学习能力来自由控制微课视频的播放速度与次数。
2.设计阶段。在进行各要素的全面分析后,设计阶段需要确定教学目标、制定教学策略、确定教学流程及选择媒体形式等。《组合图形的面积》的教学目标就是要明确组合图形的意义,掌握用“剪”、“移”、“拼”、“补”的方法求组合图形的面积;能根据给出的已知组合图形的条件,选择有效地计算方法来计算组合图像的面积;在教学过程中渗透转化的教育教学思想,培养学生运用转换的思想来解决实际问题的能力,在自主活动探索中培育他们的创新思维。教学策略就是通过制作FLASH动画来动态展示“剪”、“移”、“拼”、“补”的方法求组合图形的面积。教学过程就是通过创设情境引起注意――告知目标――讲授新知――提供指导等,具体如图所示:
辅助资源主要有:高质量的PPT 课件;根据学习内容分析,以及所采用的教学顺序,设计纸质或电子版的教学过程脚本;有些微课还需要简单的测试题,有针对知识点的辅助练习题等。
选择确定视频制作工具。可以支持微课的制作工具很多,根据不同的表现形式可以选择不同的视频制作工具,选择和确定视频制作工具可以参考如下表:
3.开发阶段。开发阶段是微课设计的主要阶段,其步骤主要有多媒体开发课程脚本、课件制作、编制测试题、开发微课。
根据小学数学新课标要求,对知识点产生的文化背景和应用场合进行详细剖析,结合小学五年级学生的心理认知特点,进行情景创设,编写脚本,如下表所示:
视频制作。制作过程中笔者分别利用Flash 软件进行视频内容制作然后通过录屏软件进行录屏操作,同时为制作的视频配音。
4.实施阶段。在实际的教育环境中微课的实施可以有以下几种情境:第一种是上传至博客、微信、百度云盘等公共服务平台上;第二种是上传至学校的学习资源共享平台上;第三种是上传至教育管理部门开设的学习资源共享平台上;第四种是在课堂上组织学习集中学习。我国微课设计起步比较晚,目前还没有统一的微课学习资源公共共享平台,因此,微课设计者通常是把自己设计的微课上传至一些开放的平台上供学生们自己下课观看学习。这样的方式不能充分的发挥微课在教学中的优势,每种情境都有各自的优缺点。第一种情境的劣势是学习者不够集中,优势是任何学习者都可以独立、重复学习和观看,受益的对象范围相对广泛;第二种情境的优势是学习者集中,劣势是微课资源未向社会公开,只供在校学习者使用,使得微课受众面小。第三情境可以可以弥补前两种情境的劣势的,像网易公开课,爱课程这样的公共服务平台,可以让更多的学习者从微课中受益并提高。第四种情境的微课受众面很窄,每次课程的受众就是一个班的学生,但是这种方式教师可以参与其中,可以随时解答学生在学习过程遇到的难点。
5.评价阶段。微课的评价就是指在微课正式实施之前,先在一个特定的范围内进行试用预学习,然后听取学习者、专家等的意见建议以及微课设计者自我的反思,目的就是是为了发现问题,及时修改微课。微课的评价主要包括三个阶段:(1)自评阶段,微课开发者在制作完微课之后,先进行自我反思和评价,对发现发现问题进行修改完善;(2)专家评价阶段,因为专家在相应的领域都具有一定的发言权,他们的建议和意见具有很强的参考价值,所以这个阶段很重要,应该根据专家的意见和建议对微课进行再次修改和完善。(3)学生评价阶段,学习者是微课的主要受众,一节好的微课成功与否,主要看学习者是否接受你所设计的微课。在这个阶段可以选定3至5 个学习者试用微课,教师可以通过观察学习者的表情也可以与学习者进行一对一交流,听取他们的意见,再次修改微课。评价过程就是微课的不断完善的过程,目的就是使其更好的适用于每个学习者。
总之,对于小学数学微课设计而言,ADDIE模型在微课中的作用不容小觑。在教学方法上需要灵活多变,富有创意;在技术上需要采用规范的微课材料,且应用得当;在要求上需要满足微课思路清晰,确保无干扰学习者学习效果的因素。设计一节好的微课可以满足在“互联网+教育”背景下学习资源公共、共享,满足信息技术和小学数学教育课程深度融合的实际需求,进而实现微课的可持续发展和促进教师、学生双赢的局面。
参考文献:
[1] 胡铁生“微课”:区域教育信息资源发展的新趋势。电化教育研究,2011(10).
组合图形的面积教学设计范文【第三篇】
一、学习“变异理论”,有所思
“组合图形的面积计算”这一内容是学生在学习了长方形、正方形、平行四边形、三角形和梯形的概念及面积计算的基础上,结合实际情境和具体图形,探索组合图形面积的计算方法。这一内容既是对长方形、正方形、平行四边形、三角形与梯形面积计算的进一步拓展,又是数学知识应用于实际问题的体现。这一内容旨在发展学生的空间观念,提高学生分析问题和解决问题的能力。
针对“组合图形的面积计算”这一内容,我的第一次教学设计了三个环节:一是回顾学习过的平面图形及面积计算方法,回忆推导平行四边形、三角形和梯形面积公式过程中运用的方法及得到的启示;二是通过创设“给小华家的客厅铺地板”这一情境,探索组合图形面积的计算方法,并把学生计算组合图形的方法分类、命名(分割法、割补法和添补法);三是巩固练习并小结。
针对我的教学设计,“变异理论”课题组的老师展开研讨,最终指出两个关键问题:一是教学“组合图形的面积计算”这一内容时,教师首先要帮助学生建立“组合图形”的概念。二是探索“组合图形的面积计算”时,例题要丰富,以利于学生真正理解和掌握。
“变异理论”鼓励教师在教学中采用多种多样的“非标准正例”,以使学生在多样化的问题情境中找到解决问题的共同规律。在教学中,学生在把分别求出的简单图形面积整合为组合图形的总面积时,最易犯两个错误:一是忘记把计算时增加的图形面积减去,二是忘记把分别计算的部分面积相加。上述两个错误说明学生对“组合图形”的概念理解不深,因而在计算“组合图形”时具有一定的盲目性。
二、运用“变异理论”,有所为
在备课过程中,由生活实例认识“组合图形”的思路给我启示,于是,联系“变异理论”,我增加了认识“组合图形”的教学环节。根据“变异理论”,列举“正例”和“非标准正例”对于学生认识概念的基本属性具有重要作用。因此,在引导学生认识“组合图形”的环节中,我特意将“正例”和“非标准正例”先后呈现,以使学生全面认识“组合图形”的多样性。首先,我让学生观察房子、风筝和七巧板等“组合图形”,请学生说说这些“组合图形”是由哪些简单图形组成的,从而引出“组合图形”的概念。其次,我出示中国少年先锋队队旗,让学生通过动手操作感知“组合图形”。最后,我请学生观察周围的物品,让学生找找哪些物品的表面形状是“组合图形”,以加深学生在生活中对“组合图形”的认知。崭新的教学设计正是通过富于变化的“正例”和“非标准正例”,有序、完整地呈现了“组合图形”的基本属性(包含简单图形,是由几个简单图形组合在一起形成的)。一方面,学生通过观察房子、风筝和七巧板这些“组合图形”(“正例”)认识了“组合图形”的一般形式;另一方面,通过观察中国少年先锋队队旗(“非标准正例”),学生进一步认识到“组合图形”在基本属性保持不变的情况下,可展现多样化的形式。正是在例证的有序变化中,“组合图形”的基本属性凸显出来,有助学生准确地理解和掌握。
在教学“组合图形的面积计算”这一内容时,为了避免学生以往经常犯的错误(即在算出基本图形的面积后忽略了相加或相减),我决定准备充分的“非标准正例”,以使学生理解“组合图形”的面积是基本图形面积相加或相减的结果。
分析这三个例题:例1可运用分割法把基本图形的面积相加,最终求出菜地的面积;例2可运用添补法把基本图形的面积相减,最终求出草地的面积;例3除了可运用分割法、添补法,还可运用割补法使队旗形成一个基本图形,最终求出队旗的面积。这三个例题的选择,不仅考虑到计算方法的多样化,更将已学的长方形、正方形、平行四边形、三角形和梯形这些基本图形全覆盖。通过列举“非标准正例”,既强化“组合图形”的基本属性,又让学生充分掌握组合图形面积计算的多种方法。
三、反思“变异理论”,有所悟
我原来的教学设计是通过“给小华家的客厅铺地板”这一例题,即通过一个教学情境让学生探索“组合图形的面积计算”。修改后的教学设计中,我运用了三个不同的“非标准正例”,这样不仅有效地强化了学生对“组合图形”基本属性的认识,更将算法的多样化建立在多个“组合图形”的基础之上,进而将对“组合图形”的认识有效地迁移到组合图形面积的计算上。反过来,运用多个“非标准正例”计算“组合图形”的面积,进一步巩固了对“组合图形”的基本属性的认识。
组合图形的面积教学设计范文【第四篇】
新课标明确指出数学教学是数学活动的教学,是师生之间交往互动与共同发展的过程。在教学中要创设有助于学生自主学习的问题情景,激发学生学习的潜能,鼓励学生大胆创新与实践。
教学活动
一、创设问题情景(多媒体出示课件)
老师:在一块长16m、宽12m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半。假如你是设计师,你能设计方案吗?
布置任务:同学们认真审题,理解题意后,分组进行讨论,设计具体方案,并说说你的想法。
二、活动与探索
各小组纷纷讨论设计(电脑机房,用“几何画板”画图),教师巡视,然后请各小组代表发言。
小组1:我们组设计的方案如图(1)所示,连接矩形的对角线把相对的两个三角形作为花园,整个图形对称美观。且根据矩形的性质一定成立。
老师:噢,同学们设计来想一想,小组1的设计符合要求吗?
学生1:小组1的设计符合要求,只要过矩形对角线交点的直线与对边相交,都会把矩形面积平分。
老师:很好,那你们组设计的方案是什么?是否有别的思路?
小组2:我们组的设计方案如图(2)所示,花园的四周是小路,它们的宽度都相等,这样设计既美观又大方。通过列一元二次方程解得小路的宽是2 m或12 m。
老师:是吗?大家想一想,小组2的设计符合要求吗?若符合,请说明是如何列方程求解而得的?若不符合,请说明理由。
学生2:小组2的设计符合要求。
我们可设小路的宽度为x m,根据题意,列方程:(16-2x)(12-2x)= ×16×12,化简得x2-14x-24=0,然后利用配方法来求解这个方程,即,x2-14x=24,(x-7)2=25,x-7=±5,
所以,x1=2,x2=12。因此小路的宽度为2 m或12 m。
综上所述知,小组2的设计方案符合要求。
学生3:不对,因为荒地的宽度只有12 m,所以小路的宽不能为12 m,因此小组2方案的结论不妥当,应改为:花园四周小路的宽度只能是2 m。
(大家不约而同地鼓掌)
老师:好,从大家的掌声中可知学生3说得在理。我们在解决实际问题时要注意解的合理性。因为一元二次方程有两个根,不一定都符合实际问题,解完之后要按题意来检验这两个根是否为实际问题的解。这一点,学生3所在的组做得很好,大家要学习他从多方面考虑问题。接下来我们来看其他组设计的方案。
小组3:受第一组的启发,我们组又设计了一个方案,如图(3),以矩形的对角线的交点为圆心,以 m长为半径在矩形中间画一个圆,这个圆也可作为花园的场地。
小组4:我们也设计了一个方案,如图(4)。
以矩形的四个顶点为圆心的扇形,和小组3的一样,扇形的半径为 m,我们把扇形以外的荒地作为花园的场地。
老师:同学们的方案设计得都很好,能触类旁通,太棒了!其他组怎么样?
小组5:我们组设计的方案如图(5)。
以一边的中点为顶点的等腰三角形作为花园的场地。因为图中阴影部分的面积为69 m2,刚好是矩形面积的一半,所以这个设计也符合要求。
小组6:我们组设计的方案如图(6)。顺次连接矩形各边的中点,所得的平行四边形作为花园的场地。因为矩形四个顶点处的直角三角形都全等。每个直角三角形的面积是24 m2,所以四个直角三角形的面积之和为96 m2,则剩下的面积也正好是96 m2,即等于矩形面积的一半。因此这个设计方案也符合要求。
小组7:我们组设计的方案如图(7)。图中的阴影部分可作为建花园的场地。经计算,也符合要求。
小组8:我们组的设计方案如图(8)。图中的阴影部分是作为建花园的场地。
老师:噢,同学们能帮助求出图中的x吗?
生:能,根据题意,可得方程:2× (16-x)(12-x)= ×16×12,即x2-28x+96=0,(x-14)2=100,x-14=±10。所以x1=24,x2=4。因为矩形的长为16 m,所以x1=24不符合题意。因此图中的x只能为4 m。
老师:同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案。还有没有其他不同的方案?
学生4:我的设计方案如图(9)所示。不知是否可行。
老师:你能求出图中的x吗?
解:根据题意,得(16-x)(12-x)= ×16×12,即x2-28x+96=0。解这个方程,得x1=24(舍去),x2=4。所以x=4。
老师:真的不容易,同学们的方案真是五花八门。不仅应用所学的知识解决了实际问题,而且各个设计还注意了图形的对称性。大家肯定还有其他不同的想法,我们课后再交流。以后,若你家要建花园,可千万别错过这样的机会。
教学反思