首页 > 学习资料 > 教学设计 >

循环小数教学设计(精编3篇)

网友发表时间 2103511

【导言】此例“循环小数教学设计(精编3篇)”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

循环小数教学设计1

教学内容:P27 例

8、例 9 教学目标:

1.通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。能用“四舍五入”法求循环小数的近似值,能用循环小数表示除法的商。

2.理解有限小数,无限小数的意义,扩展数的范围。

3.培养学生抽象概括能力,及敢于质疑和独立思考的习惯。

教学重点:

掌握循环小数、无限小数、有限小数的意义。

教学难点:

掌握循环小数的简便记法。

教学过程:

一、设疑自探

1.设疑引课。

今天这节课老师给你们讲个故事:从前有座山,山里有个庙,庙里有个老和尚,正在给小和尚讲故事说:从前有座山,山里有个庙,庙里有个老和尚,正在给小和尚讲故事说:„„这个故事讲得完吗?为什么讲不完呢?(板书:重复出现)

今天我们要学习的知识和这个故事有相同的地方,首先我们一起到运动场上去看一看吧。从图中你知道了什么?

全班齐笔算王鹏平均每秒跑了多少米?(指名一生板演)。

2.初步感受循环小数的特点。

有些同学算着算着就停下了,发现了什么问题吗?(组织学生小组内交流)

可能发现:

1.余数总是“25”。

2.继续除下去,永远也除不完。

3.商的小数部分总是重复出现“3”。

师:你们怎么能肯定会永远除不完,商的小数部分总是重复出现“3”?让学生充分发表意见,明确余数一旦重复出现,商也就重复出现。

师:那么商如何表示呢?你为什么使用省略号?省略号在这里表示什么意思?(师板书)

3.总结概括循环小数的意义。

其他除法算式会不会出现这种情况呢?请同学们算一算:28÷÷11

先计算,再说一说这些商的特点。如果继续除下去,商会怎样?能除尽吗?(请生板演计算结果)

观察例

8、例9的三道题,你们发现他们的异同吗?(不同点:一个是小数“3”的循环,另一个是小数“4”和“5”的循环。相同点:

学生讨论后,指名汇报,教师抓住学生回答板书:

(1)小数部分,位数无限(或者除不尽)。

(2)有的是一个数字不断重复出现,有的是两个„„。教师小结循环数的意义,(板书课题)。

二、质疑探究

(一)检查自学情况(学困生回答,中等生补充,优等生评价)

巩固练习:下列哪些是循环小数?并说一说理由。

„„„„„

学生评议。

三、质疑再探

(一)学生质疑

教师:针对本节课学习的知识,你还有什么疑惑请提出来,大家一起研究。也可以提出由本节所学知识联想到的问题。

(二)解决学生提出的问题

(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)

除了用省略号来表示循环小数外,还可以用简便记法来表示。如„还可以写作,还可以写作,请学生把前面判断题中的循环小数用简便记法写一写。(请学生板演),同座互相检查,大家交流订正,在这个过程中,鼓励学生质疑。

(„可能出现问题,师生共同辨析)

看书P27-28第一自然段,及了解“你知道吗?”

理解有限小数和无限小数的意义。

师:想一想,两个数如果不能得到整数商,所得的商会有哪些情况?请举例说明?

学生小组讨论,汇报。

师两个数相除,如果不能得到整数商会有两种情况:

1、商的小数部分位数是有限的,叫做有限小数;

2、商的小数部分位数是无限的,叫做无限小数。判断前面练习题中的小数哪些是有限小数?哪些是无限小数。

循环小数是有限小数,还是无限小数?为什么?

学生有可能会质疑,结果会不会是无限不循环小数,教师可根据课堂或本班学生实际和学生共同分析。

四、运用拓展

(一)学生自编习题

1.让学生根据本节所学知识,用适当题型编写1~2道练习题。

2.展示学生高质量的自编习题,交流解答。

(二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。

用计算器算出商后,说出商是什么小数,依据是什么?是循环小数的要求用简便方法写出来。

19÷÷÷

(三)全课总结

1.学生谈学习收获

教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。

2.学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。

课后反思:

练习中出现了以下几种常见错误:

1.在竖式中在第一个循环节上也打了循环节的圆点。

2.在横式上照抄竖式结果时,虽然在第一个循环节上打了圆点,可却写了两个循环节。

3.在计算竖式时几个数字还未重复两次出现时,学生就经过推理判断出它是循环小数而不再继续往下除了。如:2。01212„„学生除到2。0121时就发现小数位数第四位与第二位的数字相同,余数也相同而不再继续往下除了。

循环小数教学设计2

《循环小数》教学设计

潘玉环

教学目标:

1.使学生初步认识循环小数,知道什么是循环小数,以及循环小数的简便写法和读法。2.初步认识有限小数和无限小数。

3.激发学生探究的欲望,培养学生观察、比较、分析、判断、抽象概括能力。教学重点、难点:理解循环小数的意义,会用简便方法读写循环小数。教学准备:课件。教学过程:

一、创设情景

师:你们最喜欢什么季节? 师:你喜欢的季节还会出现吗? 师:四季的出现有什么规律?

师:像一年四季不断地重复出现的现象,我们把它叫做循环。(板书:循环)生活中还有象这样依次不断重复出现,无穷无尽的循环现象吗?你能举例

师:生活中有很多循环现象,数学中有没有这种现象呢?我们一起去找一找。(引出课题)

二、自主探究

(一)初步认识循环小数

1、先看算式1÷32、你说我写,看计算过程中你能发现什么?

3、师板书,在计算过程中引导学生发现1÷3这个算式的两个特点:1.余数重复出现“1”;2.商的小数部分连续的重复出现“3”。

4、师:像这样继续除下去能除完吗?

5、师:怎样表示这种个永远也除不完的商?这种商有些什么特点,就是我们今天要研究的问题,也是我们要认识的新朋友——循环小数

(二)自主探索循环小数

1.刚才我们已经发现了这个算式的特点,下面我们探讨一个问题,为什么上的小数部分总是重复出现“3”,它和每次出现的余数有什么关系?

引导学生发现:当余数重复出现时,商就要重复出现:商是随余数重复出现才重复出现的。2.师:猜想一下,如果继续除下去,商会是多少?他的第四位商是多少,第五位呢?

学生思考后回答:如果继续除下去,无论是哪一位,只要余数重复出现1,它的商也就重复出现3.师:是这样的吗?我们可以接着往下除来看看。验证。师:那么我们怎样表示1÷3的商呢?

引导学生说出可以用省略号来表示永远除不尽的商。

师:像„这样小数部分有一个数字依次不断重复出现的小数,就是循环小数。

(三)进一步认识循环小数。

师:下面我们来继续研究循环小数,请同学们用竖式计算÷11 学生先独立计算,教师课件出示: 1.这个算式能不能除尽? 2.它的商会不会循环?

3.如果循环它是怎样循环的?(学生计算,然后全班汇报)

师:你觉得这样的算式除到哪一位就可以不除了? 指导学生说出,只要余数重复了,就可以不除了。师:为什么?

引导学生说出:因为像这样的算式余数循环,商也跟着循环。师:你能标出这个算式的商吗?

师:下面我们来继续研究循环小数,请同学们用竖式计算÷7 教师课件出示:

1.这个算式能不能除尽? 2.它的商会不会循环?

3.如果循环它是怎样循环的?(学生计算、然后全班汇报)

师:比较„和„,„你觉得这三个循环小数有什么不同?

师:像„,„,„,这样的小数都是循环小数。你能说出几个循环小数吗? 学生说,师板书。

师:观察这些循环小数,说说他们有什么共同之处? 学生汇报教师点拨。

刚才同学们讲的都有一定的道理,下面我们看看书上的结论。学生自由朗读。

课件出示:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。▲辨析概念

1.读懂了吗?老师来检验一下你们理解的情况,出示: 判断:

A、一个数,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。()B、一个数的小数部分,从某一位起,一个数字或者几个数字重复出现,这样的小数叫做循环小数。()2.通过刚才的判断,你认为概念中那些字是比较重要的,读出这几个字的重音,集体朗读一遍。请你判断下面那些数是循环小数,为什么?(课件)…

四、自学“循环小数”的相应新知,并尝试应用。

(一)、认识有限小数和无限小数

师:不是循环小数,那它是什么数呢?板书:有限小数

师:在„和„小数中,是不是循环小数呢?为什么? 师:那这三个数是什么数呢?板书:无限不循环小数

课件出示:小数部分的位数有限的小数是有限小数。小数部分的位数无限的小数是无限小数。请同学们说几个有限小数,再说几个无限小数。

(二)、认识循环节

一个循环小数的小数部分,依次不断重复出现的数字,有一个名字叫循环节。

课件出示:一个循环小数的小数部分,依次不断重复出现的数字,就是这个循环小数的循环节。你们能写出下面三个循环小数的循环节吗?

„的循环节是()

„的循环节是()

„的循环节是()

(三)、循环小数的简写

1、我们认识了这么多的循环小数,你们认为写循环小数麻烦吗?

2、课本上为我们提供了一种简便的写法,大家想不想了解一下。

课件出示:写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位数字上面各记一个圆点。学生自学

3、学会了循环小数简写的方法了吗?好!我们来试一试。把下面循环小数用简便方法写出来,并指导读的方法。…

把循环小数的简便形式改写成一般形式,你会吗?

=

=

=

六、巩固练习

一、下面的数中,哪些是循环小数?将它们表示用简便形式表示出来: …

… …

二、判断题。(对的画“√”,错的画“×”)

①一个小数从某一位数起,一个或几个数字依次不断重复出现的小数叫做循环小数。()②„„是循环小数。()③是循环小数。()

④„„=。()

⑤„„,循环节是921。()⑥ 是有限小数。()⑦循环小数是无限小数。()⑧无限小数是循环小数。()

三、根据实际需要,取它的近似数。

(保留两位小数)

(保留三位小数)

四、比较下面两个数的大小。

七、全课总结。

通过这节课的学习,你有什么收获?

思考题、如果用A、B、C 表示不同的三个数字,如:•可以简写成什么数?这个小数的小数部分第一百位是什么?

循环小数教学设计3

循环小数教学设计

循环小数教学设计

教学目标:

1.使学生初步认识循环小数,知道什么是循环小数,以及循环小数的简便写法和读法。

2.初步认识有限小数和无限小数。

3.激发学生探究的欲望,培养学生观察、比较、分析、判断、抽象概括能力。

教学重点、难点:理解循环小数的意义,会用简便方法读写循环小数。教学准备:教师在小黑板上准备多题练习题。教学过程:

一.

创设情景 师:你们最喜欢星期几啊?

师:一个星期七天的出现有什么规律?

引导学生:一个星期的星期一到星期日总是不断地出现。(板书:不断、出现)

师:有规律吗?

生:是按照从“星期一”到“星期日”的顺序重复出现的。(板书:重复)/ 7

循环小数教学设计

师:既然是不断地重复出现,那么出现的次数是有限的还是无限的? 师:像一个星期七天总是不断地重复出现的现象,我们把它叫做循环。(板书:循环)生活中还有象这样依次不断重复出现,无穷无尽的循环现象吗?你能举例

师:今天我们来研究数学里的循环。(引出课题)二.自主探究

(一)初步认识循环小数 师出示÷4(用竖式计算)

师:这道题同学们算得快又对,那么敢挑战下面两道题吗?(出示 10÷3,49÷22)

让学生说说你有什么发现。师:为什么会重复出现“3”呢?

师:这么说10÷3的商里有多少个“3”呢? 师:既然是无数个,可以怎么表示呢?

生:我认为可以用省略号表示有无数个“3”。(板书:10÷3 = ……)师:第3题的商又有什么特点呢?(除到商是五位小数时,要求停笔)师:想一想,如果继续除下去,商会怎样?/ 7

循环小数教学设计

生:商会依次不断地重复出现“2”和“7”。师:你是怎样想出来的呢?

生:因为余数重复出现“6”和“16”,所以商就会重复出现“2”和“7”。师:谁能说出这道题的商。生:49除以22等于等等。

师:“等等”用什么符号表示?能不能不写省略号?为什么?

生:不能不写省略号。因为只有写上省略号,才能表示商后面还有很多27。(板书商)

师:像这样的数就是循环小数。

练习一:(小黑板出示)能说出省略号表示的意思吗? ……

(表示后面有无数的2)……

(表示后面有无数的16)……

(表示后面有无数的360)师:有几个数字在重复? 让生比较这三个数有什么相同点和不同点?

小结:从某一位起,一个数字或几个数字,依次不断地重复出现。(根据学生的回答补充板书)/ 7

循环小数教学设计

师:请同学们看看书上写的与刚才说的还有什么不同? 师:书上为什么要强调从“小数部分”的某一位起呢?

生:这就是说循环小数是从“小数部分”而不是从整数部分的某一位起,一个数字或者几个数字依次不断地重复出现。(让生试着在草稿本上写几个循环小数)(二)循环小数的简便读写法 1.循环节

师:(指板演题)在“……”中不断地重复出现的数字是哪一个?

(3)

在“……”中依次不断地重复出现的数字是哪几个?

(2、7)

师:在循环小数中,依次不断重复出现的数字叫循环节 师:同桌互相说说自己写出来的循环小数哪些数字是循环节。练习二:(说说下面的小数的循环节是谁?)……

、循环小数的简便记法

师:循环小数的一般写法是把循环节写出两遍或三遍,然后写上省略号。不过这样写比较麻烦,简便写法是只写出一个循环节,然后在循环节的首位和末位数字上各记一个圆点,这个点叫做循环点,如。读作:二点二二七,二七循环。/ 7

循环小数教学设计

师:请同学们试一试。(1)写出……的简便写法。(2)自己写出来的循环小数的简便写法。

(三)认识有限小数和无限小数

师出示练习三:再请同学们判断下面哪几个数是循环小数,为什么?

……

……

……

……

……

(学生判断后,教师组织讨论)师:不是循环小数,那它是什么数呢?

师:在……和……小数中,是不是循环小数呢?为什么? 生1:……没有重复出现的数字, 所以它也不是循环小数。生2:在……小数中“5”、“4”、“7”这三个数字重复地出现,但没有依次地重复出现,所以它也不是循环小数。师:那这三个数是什么数呢?

让生自学例九,后汇报交流你知道了什么? 师:那么是无限小数的,一定是循环小数吗? 让学生举例验证。

师:是循环小数一定是无限小数吗?/ 7

循环小数教学设计

(四)小结学习内容

师:今天我们学习了哪些新知识?谁能说一说。师:你能用今天所学知识说明这几道题的商吗?

出示: 2÷9 = ……

5÷12 = ……

9÷55 = ……

三.巩固练习

1、判断题。(对的画“√”,错的画“×”)

(1)是循环小数。

(2)是混循环小数。

(3) =

(4) >

(5)循环小数……可以写作。

2、找数。在下列数中

(1)比1小,循环节是三位数字的纯循环小数有((2)比1大,循环节是一位数字的混循环小数有(

(四)课堂作业: 练习七第7、8题。/ 7

((((()))))。)。)

循环小数教学设计

(五)课堂小结与质疑。/ 7

相关推荐

热门文档

22 2103511