首页 > 学习资料 > 教学设计 >

圆锥的体积教学设计实用【4篇】

网友发表时间 3055212

【写作参考】一篇好的范文往往能让您的写作事半功倍,下面是由阿拉题库网友为您分享的“圆锥的体积教学设计实用【4篇】”优质范例,供您写作参考之用,轻松写作,远离加班熬夜,希望以下内容对您有所帮助,喜欢就下载支持吧!

圆锥的体积教学设计【第一篇】

2、会运用公式计算圆锥的体积.。

正确理解圆锥体积计算公式.。

1、提问:

(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.。

2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)。

(一)指导探究圆锥体积的计算公式.。

1、教师谈话:

2、学生分组实验。

3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)。

4、引导学生发现:

v=1/3sh。

6、思考:要求圆锥的体积,必须知道哪两个条件?

7、反馈练习。

圆锥的底面积是5,高是3,体积是()。

圆锥的底面积是10,高是9,体积是()。

(二)教学例1。

学生独立计算,集体订正.。

2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)。

(1)已知圆锥的底面半径和高,求体积.。

(2)已知圆锥的底面直径和高,求体积.。

(3)已知圆锥的底面周长和高,求体积.。

4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?

通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)。

(1)底面面积是平方米,高是米.。

(2)底面半径是4厘米,高是21厘米.。

(3)底面直径是6分米,高是6分米.。

圆锥的体积教学设计【第二篇】

教学准备:准备若干同样的圆柱形容器,若干与圆柱等底等高和不等底不等高的圆锥形容器,沙子和水。

一、引出问题。

1.出示圆锥形小麦堆。

这下可难住了小虎,因为他只学过圆柱的体积计算,圆锥的体积怎样计算还没学,怎么办?你有办法知道圆锥的体积吗?(板书:圆锥的体积)。

2.引导学生独立思考,提出各种猜想。

3.进一步观察、比较、猜测。师举起圆柱、圆锥教具,把圆锥体套在透明的.圆柱体里,让想一想它们的体积之间会有什么样的关系。(生猜测,圆柱的体积可能是圆锥的2倍、3倍、4倍或其他)。

二、实验探究圆锥与圆柱体积之间的关系。

1.开展实验收集数据。

师:圆锥的体积究竟和圆柱体积有什么关系?请同学们亲自验证。这里有沙子和水,还有等底等高和不等底不等高的各种圆柱、圆锥的模具。实验要求:各组根据需要选用实验用具,小组成员分工合作,轮流操作,作好实验数据的收集整理。

1号圆锥。

2号圆锥。

3号圆锥。

次数。

与圆柱是否等底等高。

教学目标:

1.理解和掌握圆锥体积的计算方法,并能运用公式解决简单的实际问题。

2.培养学生乐于学习,勇于探索的情趣。

圆锥的体积教学设计【第三篇】

指导思想与理论依据:

本节课的教学内容是圆锥体积公式的推导,是一节几何课,新课程标准指出:教学的任务是引导和帮助学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。因此,在设计本节课时,我力求为学生创造一个自主探索与合作交流的环境,使学生能够从情境中发现数学问题,学生会产生探究问题的需要,然后再通过自己的探索去发现和归纳公式,体验过程。

教学背景分析:

(一)教学内容分析:

1、教材内容:

本节教材是在学生已经掌握了圆柱体体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

2、研读完教材后,自己的几个问题:

(2)学生对三分之一好理解,怎样去认识是等底等高的柱、锥。

(4)本节课的教学内容只能挖掘到圆锥的体积吗?能不能再深入一些?

3、自己的创新认识:

首先,研读教材后,我认为这几个问题的根本是一致的都是要把握住“谁在学?怎么学?”首先,在设计本节课时我想不只是让学生学会一个公式,而是学会一种数学学习的方式,一种数学学习的思想,体验一种数学学习的过程。

其次,是要提供给同学们一个可操作的空间。

(二)学情分析:

1、学生在前面的学习中对点、线、面、体有一定的基础知识,同时也获得了转化、对应、比较等数学思想。尤其是对于高年级段的同学来讲他们获取知识的渠道十分丰富,自己又有一定探究能力,对于圆锥体积的知识相信是有一定认识的,在进行教学设计前我们应该了解到他们认识到哪儿了?了解学生的起点,为制定教学目标和选择教学策略做好准备。

2、自己的认识:(结合自己在讲课时发现的问题而谈)。

学生能够根据以前的学习经验圆柱和圆锥的底面都是圆形认识到二者之间存在一定联系,而且又是刚学完圆柱学生认识到这一点看来并不难,难的是等底等高。因此,在教学设计过程中要注意柱、锥间联系的设计,突破学生对“圆锥的体积是与它等底等高的圆柱体积的三分之一”中的“等底等高”。

(三)教学方式与教学手段分析:

根据本节课的教学内容及特点,在教学设计过程中我选择了“操作——实验”的学习方式。学习任何知识的最佳途径是由自已去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”我认为这也正是我在设计这节课中所要体现的核心内容。第一次学习方式的指导:体现在出示生活情境后,先让学生进行大胆猜测“买哪个蛋糕更划算”。本次学习方式的指导是通过学生对生活问题进行猜想,使学生认识到其中所包含的数学问题,并由此引导学生再想一想你有什么解决方法。

(四)技术准备与教学媒体:

在创设情境中利用多媒体出示主题图,然后要从图中剥离出图形来,并演示整个实验过程。

教学目标设计:

(一)教学目标:

1、使学生掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

2、通过操作——实验的学习方式,使学生体验圆锥体积公式的推导过程,对实验过程进行正确归纳得到圆锥的体积公式,能利用公式正确计算,并会解决简单的实际问题。

3、培养学生的观察、分析的综合能力。

(二)教学重点:理解圆锥体积的计算公式并能运用圆锥体积公式正确地计算圆锥的体积。

(三)教学难点:通过实验的方法,得到计算圆锥体积的公式。

教学过程与教学资源设计:

圆锥的体积教学设计【第四篇】

教学过程:

一、复习导入。

1、怎样计算圆柱的体积?(板书公式)。

2、一个圆柱的底面积是60平方米,高15米,它的体积是多少立方米?

3、出示一个圆锥,请学生说说圆锥的特征。

4、导入:前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积应怎样计算呢?今天这节课我们就来研究这个问题。(板书课题)。

二、动手测量,大胆猜想。

1、动手测量,找圆锥和圆柱的底和高的关系。

2、学生动手测量,教师巡视。给予指导。

3、交流得出结论:圆柱和圆锥等底等高。

4、猜想等底等高的圆柱和圆锥的体积之间有什么关系?

三、实验操作,推导出圆锥体积计算公式。

1、实验操作。

师:圆锥的体积到底与等底等高的圆柱的体积之间有什么关系呢?我们就用实验来验证我们的猜想。每个小组都准备了米或沙,打算怎么实验,商量好办法后再操作。

2、学生分组实验,教师巡视。

3、汇报交流,你们组是怎么做实验的?通过实验你发现了什么?

4、强调等底等高。

5小结:不是任何一个圆锥的体积都是任何一个圆柱体积的1/3,必须有前提条件。(板书结论)。

6、练习(出示)。

(1)一个圆柱的体积是立方分米,与它等底等高的圆锥的体积是立方分米。

(2)一个圆锥的体积是立方分米,与它等底等高的圆柱的体积是()立方分米。

三、巩固练习。

底面积是平方分米,高是9分米。

底面半径是6厘米,高是厘米。

底面直径是4厘米,高是厘米。

底面周长是厘米,高是6厘米。

2、填空。

b圆柱体积的与和它()的圆锥的体积相等。

c一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。

d一个圆锥的底面积是12平方厘米,高是6厘米,体积是()立方厘米。

3、判断。(用手势表示)。

a圆柱体的体积一定比圆锥体的体积大()。

c正方体、长方体、圆锥体的体积都等于底面积×高。()。

d等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。()。

四、全课小结。

师:今天这结课学习了什么?通过今天的学习研究你有什么收获?

五、解决实际问题。

在建筑工地上,有一个近似圆锥形状的沙堆,测得底面直径是4米,高米。每立方米沙大约重吨,这堆沙约重多少吨?(得数保留整吨数)。

相关推荐

热门文档

22 3055212