乘法分配律教学设计【精彩4篇】
【前言导读】此篇优秀范文“乘法分配律教学设计【精彩4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
《乘法分配律》教学设计【第一篇】
教学目标
1、使学生理解乘法分配律的意义、
2、掌握乘法分配律的应用、
3、通过观察、分析、比较,培养学生的分析、推理和概括能力、
教学重点
乘法分配律的意义及应用、
教学难点
乘法分配律的反应用、
教具学具准备
口算卡片、投影仪、
教学步骤
一、铺垫孕伏
1、 口算、
(27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4
2、 用简便方法计算、(说明根据什么简算的)
25×63×4
3、 师生比赛,看谁算得又对又快、
20×5+5×80 (1250+125)×8
让学生说明是怎样算的?
二、探究新知
1、导入:
刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容、(板书课题:乘法分配律)、
2、教学例6:
(1)出示例6:演示课件“乘法分配律”出示例6 下载
(2)引导学生观察每组的两个算式、
(3)教师提问:从上面的例子你发现了什么规律?
(4)学生明确:每组中的两个算式都可以用等号连接、
教师板书:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教师出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
学生分组讨论:每组中算式所表示的意义、
(6)反馈练习:按题要求,请你说出一个等式、(投影出示)
(__+__)×__=__+__×
教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
引导学生观察:等号左右两边算式的规律性
启发学生回答:首先是等号左边两个数的和同一个数相乘、
其次是等号右边两个加数分别同一个数相乘再把两个积相加、
最后是等号左右两边的两个算式相等、
3、教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变、这叫做乘法分配律、
4、反馈练习:
横线上能填几?为什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?
根据练习学生从而得出: (a+b)×c=a×c+b×c
使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便、
5、教学例7:演示课件“乘法分配律”出示例7 下载
(1)出示例7:102×43
启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?
使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便、
教师板书:
(2)出示9×37+9×63
引导学生观察:这类题目的结构形式是怎样的?有什么特点?
教师提问:根据乘法分配律,可以把原式改写成什么形式?
根据学生的回答教师板书:9×37+9×63
=9×(37+63)
=9×100
=900
学生讨论:这样算为什么简便?
师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和、
②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数、
③另外两个不同的因数,是两个能凑成整十、整百、整千的加数、
(3)揭示教师算得快的奥秘
上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的乘法分配律使计算简便、现在你们会了吗?
三、巩固发展 演示课件“乘法分配律”出示练习
1、 练习十四第1题、
根据运算定律在□里填上适当的数、
(43+25)×2=□×□+□×□
8×47+8×53=□×(□+□)
3×6+6×7=□×(□+□)
8×(7+6)=8×□+□×□
2、在横线上填上适当的数、
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__) ×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写、
3、把相等的算式用等号连接起来:
(1)32×48+32×52 32×(48+52)
(2)(24+8)×8 24×5+24×8
(3)20×(l+15) 0×17+20×15
(4)(40+28)×5 40×5+ 28
(5)(10×125)×8 10×8+125×8
(6)4×(30+25) 4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4、选择题:
(1)28×(42+29)与下面的( )相等
①28×42+28×29 ②(28+42)×(28+29) ③28×42×29
(2)与a×8-b×8相等的式于是( )
①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8
(3)与(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9
5、练习十四第4题,投影出示、
一辆凤凰牌自行车420元,一辆永久牌自行车405元、现在各买三辆、买凤凰车和永久车一共用多少元?
四、课堂小结
今天我们学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加、希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便、
五、布置作业
练习十四第3题、
用简便方法计算下面各题、
(80+8)×25 35×37+65×37
32×(200+3) 38×29+38
板书设计
《乘法分配律》教学设计【第二篇】
教学内容
苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。
教学目标
1.使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。
2.使学生在发现规律的过程中,发展观察、比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3.使学生能联系实际,主动参与探索、发现和概括规律的学习活动,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和信心。
教学过程
一、创设比赛场景,在活动中激趣
谈话:听说我们四(1)班的同学口算速度快,正确率高,想不想显一显身手?那我们来一个速算比赛怎么样?
A组B组
(1)135×6+65×6(1)(135+65)×6
(2)9×37+9×13(2)9×(37+13)
在A组同学不服气,说B组容易时,教师激趣:是吗?B组容易?那我们再来一次好吗?
A组B组
(1)(10+4)×25(1)10×25+4×25(2)(4+8)×125(2)4×125+8×125
谈话:为什么这次A组又输了?观察观察,可不要冤枉了老师。你们有什么发现?(学生讨论交流)
小结:这真是一个了不起的发现。一切数学知识来源于发现问题,而一个伟大的数学家有所成就在于他发现问题。看看今天我们的同学们发现一个怎样的数学知识。有信心吗?给自己鼓鼓掌!
谈话:同学们,我们学校有5个同学就要去参加“海安县首届批发王杯少儿才艺大赛”了,声乐兴趣小组的于老师准备为他们每人买一套一样的漂亮服装,我们一起去看看好吗?
评析:玩是学生的天性。心理学研究表明:促进人素质、个性发展的最主要途径是实践活动,而“玩”正是儿童所特有的实践活动形式。如何让学生玩出效果来?教师提供了一个“竞赛”的机会,让学生在“竞赛”中发现竞赛的不公平,近而寻找不公平的原因,激发了学生学习的兴趣。在探究原因的过程中,学生潜移默化地感知了同组算式之间的关系。
二、创设活动情境,在合作中探究
1.交流算法,初步感知
(课件出示例题情境图)
谈话:从图中你了解到了哪些信息?于老师可以怎样搭配服装?
(1)学生的选择方法1:买5件夹克衫和5条裤子
一共要付多少元呢?你能解决这样的问题吗?学生独立列式计算。(教师巡视,安排不同方法解答的学生板演,并了解全班学生采用的什么方法)
反馈:你是怎样解决这一问题的?为什么这样列式?
组织学生交流自己的解题方法,再分别说说两个算式的意义。(课件显示)
谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?
学生在自己的本子上写,教师巡视。
[教师板书:(65+45)×5=65×5+45×5],让学生读一读。
(2)学生的选择方法2:买5件短袖衫和5条裤子
提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?
根据学生回答,列出算式:32×5+45×5和(32+45)×5
再问:这两个算式有什么关系?可以用什么符号把它们连接起来?
[教师板书:(32+45)×5=32×5+45×5]
启发:比较这两个等式,它们有什么相同的地方?
2.深入体验,丰富感知。
现在请每个同学拿出信封中的练习纸,想一想在这几组算式中,哪些可以用等号连起来(在□里画=号),哪些不能?当然你可以先计算每组中两个算式的得数,也可以仔细观察。
在得数相同的两个算式中间的□里画“=”
(1)(28+16)×7□28×7+16×7
(2)15×39+45×39□(15+45)×39
(3)74×(20+1)□74×20+74
(4)40×50+50×90□40×(50+90)
(5)(125×50)×8□125×8+50×8
分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?有办法使他们变得相等吗?(课件显示修改过程)
谈话:你能写出几组类似这样的式子吗?大家动手写一写。(提醒学生认真算一算你写出的等式两边是不是相等)
学生举例并组织交流。(比较这些等式是否具有相同的特点)
3.反思学习,揭示规律
提问:像这样的等式,写得完吗?像这样等号左边和右边的式子都会相等,这是不是巧合?还是有什么规律存在?
谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
如果用a、b、c代表上面等式中的数,这个规律怎样表示?[板书:(a+b)×c=a×c+b×c板书好适当图例解释意思]
小结:同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)
(课件显示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变,这叫做乘法分配律。)
对于乘法分配律,用字母来表示,感觉怎样——简洁、明了,这就是数学的美!
三、巩固内化知识,在实践中运用
谈话:让我们带着自己发现的数学知识进入今天的“数学乐园”吧!
1.大显身手
出示“想想做做”第1题,让学生在书上填一填。
师:第2题你是怎么想的?
小结:乘法分配律可以正着用,也可以反着用。[补充板书:a×c+b×c=(a+b)×c]
2.生活应用
(“想想做做”第3题)
小结:说说两种方法的联系。
3.巧妙运用
(“想想做做”第4题)(同桌一人做一组,做在练习本上)
谈话:每组两道算式有什么联系?哪一题计算比较简便?
现在你知道上课开始时为什么B组同学算得快吗?
小结:乘法分配律可以使计算简便。
4.明辨是非
我校二年级有3个班,每个班有34人。三年级有2个班,每个班有36人。二三年级一共有多少人?
王小明这样计算:
(3+2)×(34+36)
=5×70
=350(人)
①观察一下,你赞同王小明的算法吗?为什么?
②要用乘法分配律,要有什么条件?
5.巧猜字谜
猜一猜,等号后边是三个什么字?
人×(1+2+3)=
6.大胆猜想
如果把乘法分配律中的加号改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?
学生小组交流猜想。
谈话:我们再回到课开始的那条题目上,如果于老师想知道“买5件夹克衫比5件短袖衫贵多少元?”你能帮她吗?试试看!
教师组织、引导学生总结得出:
(a-b)×c=a×c-b×c
小结:大家真了不起!让我们为自己的伟大发现热烈鼓掌吧!
四、回忆梳理知识,在反思中总结
今天这节课,你有什么收获?
五、布置作业:“想想做做”第5题。
《乘法分配律》教学设计【第三篇】
一、教材分析:
乘法分配律是北师大版教材四年级上册第四单元运算律第56、57页教学内容。乘法分配律是本单元的教学重点,也是难点。教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程。同时,学好乘法分配律是学生下节课进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。
二、教学目标:
1、结合具体的问题情境,经历探索乘法分配律的过程,理解并掌握乘法分配律的意义;
2、在观察、比较、分析和概括的过程中,培养简单的推理能力,增强用符号表达数学规律的意识,体会用字母式子表示乘法分配律的严谨与简洁;
3、在学习活动中不断产生对数学的好奇和求知欲,培养良好的学习习惯。
三、教学重点和难点:
教学重点:经历探索乘法分配律的过程,建立乘法分配律模型。
教学难点:理解乘法分配律的意义。
四、教学流程:
(一)创设情境,感知规律
师生谈话导入新课。
师:同学们,“爸爸和妈妈都爱我。”这句话还可以怎么说?
“小明和小华都是他的好朋友。”这句话也可以怎么说?
生:……
师:真聪明,回答正确,在数学王国里也有类似的表达,今天让我们一起去探索吧!
[设计意图:本环节通过创设一个充满趣味的生活问题,引领学生发展自身的灵性,寻求数学知识,与现实问题之间的本质联系,促进学生感悟、内化、激发学生探索新知的兴趣。]
(二)解决问题,明晰算理。
1、情境一——厨房贴瓷砖
(1)让学生从图中获取数学信息,提出数学问题。
(2)生汇报,师择取问题:一共贴了多少块瓷砖?
让学生用多种方法列综合算式解答问题,然后小组内交流算法及解题思路。
(3)组织全班交流,要求学生讲清楚是怎样想的。教师配以课件演示并适时板书四种算法:3×10+5×10;(3+5)×10;4×8+6×8;(4+6)×8。
(4)小组讨论:观察四个算式,哪两个算式联系紧密,是否可以用等号连接?
(5)全班交流。[(3×10+5×10与(3+5)×10联系紧密,可用等号连接;4×8+6×8与(4+6)×8联系紧密,可用等号连接。]
追问:为什么可以用“=”连接?让学生充分讲道理。
(6)比较:观察上面两组算式,你有什么发现?(第一组中的第一个算式里10出现了两次,而第二个算式里10只出现了一次,第一个算式没有小括号,第二个算式有小括号,改变运算顺序了……)
[设计意图:关注学生已有知识经验,以学生身边熟悉的情境,为教学的切入点,激发学生主动学习的需要。为学生创设了与生活环境、知识、背景密切相关的感兴趣的学习情境——根据主题图,提出问题并通过两种算式的比较,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。]
2、情境二——花圃
(1)让学生看图并解决问题。
(2)学生汇报算法及解题思路,师配以课件演示并板书:(30+25)×2;30×2+25×2。
师:这两个算式是否可用等号连接,为什么?(可以因为它们的结果相同,都是求篱笆的长,只是运算顺序不同。)
3、举实例
师:生活中,像用这样两种方法解决的问题很多,你能举个例子吗?学生独立思考后全班交流。比如:(1)老师买了5个篮球和5个足球,一个篮球50元,一个足球80元,一共花了多少钱?(2)一辆中巴车限乘20人,一辆小轿车限乘4人,现在各租2辆,一共能坐多少人?
[设计意图:创设问题情境,联系生活实际为学生感受乘法分配律提供现实背景,在学生独立思考的基础上,引导有效的交流,使学生对乘法分配律有所初步感知。]
(三)观察对比,概括规律
这一环节是本节课的中心环节,为了突出重点,突破难点,发挥学生的主体作用。我安排了观察总结、举例验证、抽象概括和尝试应用四个层次进行教学。
1、观察总结
(1)师:同学们,请观察黑板上这几组算式,你有什么发现吗?请小组内讨论交流。
(2)学生汇报(学生结合算式,能说出自己的发现即可)。
(3)教师在学生总结的基础上指着算式小结乘法分配律的意义:两个数和同一个数相乘,等于把这两个加数分别同这个数相乘,再把两个积相加,结果不变。
(4)师揭示课题,板书课题:乘法分配律。
[设计意图:这一环节让学生从多组算式入手,通过观察比较,互相补充,在算式中寻其相同点和不同点,并在分析题意中,找寻其存在规律的必要性,帮助学生在理解算理的基础上,明确乘法分配律的含义。]
2、举例验证
让学生列举不同的算式来验证乘法分配律,再小组交流,集体反馈时教师有选择地板书学生列举的算式并适时表扬。
[设计意图:学生举例验证过程,是学生不完全归纳的过程,对于学生识记乘法分配律,理解乘法分配律的内涵有重要的作用,通过自己举例验证有利于学生将新的知识纳入到自己已有的知识体系。]
3、抽象概括
(1)让学生用a、b、c表示乘法分配律,有困难的学生教师即时指导,再汇报交流,师板书:a×c+b×c=(a+b)×c,生齐读字母公式。
(2)让学生比较乘法分配律与“爸爸和妈妈都爱我,爸爸爱我,妈妈也爱我。”这两句话之间的相似之处。
生:a相当于爸爸,b相当于妈妈;c相当于我,爱相当于乘号。
[设计意图:让学生用字母表示乘法分配律,历经归纳推理到抽象概括的过程,体会用字母式子表示乘法分配律的严谨与简洁。]
4、尝试应用
(1)让学生用自己喜欢的方法表示4×9+6×9……,说明乘法分配律是成立的;
(2)学生独立完成后,小组交流;
(3)教师巡视抽取有代表性的方法展示给大家看;
(4)再问这个算式还可以怎样表示?学生说出另一种算式,课件呈现4×9+6×9=(4+6)×9
[设计意图:让学生借助自己喜欢的方式结合此题说说这个算式还可以怎样表示,学生的思考过程就是乘法分配律形式的再现过程,要让多个学生表达,在相互表达中,加深对乘法分配律的理解。]
(四)挑战过关,应用规律:
第一关:请算一算一共有多少个方格?(用两种方法列综合算式计算)。
(1)学生汇报算法;
(2)比较哪种方法比较简便?为什么?
第二关:填一填
①(12+40)×3=□×3+□×3
②15×(40+8)=15×□+15×□
③78×20+22×20=(□+□)×20
④66×28+66×32+66×40=(□+□+□)×□
(1)学生展示填写的答案。
(2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便?为什么?
第三关:学校要给28个人的合唱队买服装,一件上衣58元,一条裤子42元,请你算算买服装要花多少钱?(用两种方法列综合算式解答)
(1)学生汇报算法。
(2)比较哪种方法比较简便?小结:学习了乘法分配律可以灵活选择算法,怎么计算简便就怎么算。
[设计意图:多样练习也是一种信息源,解决问题的过程其实也是一种深化理解、蓄积“能量”的过程,是学生拓展知识视野,完善认知结构,提升认识境界、增长人生智慧的过程。在练习中,帮助学生继续完善对乘法分配律的理解。]
(五)课堂总结,梳理新知
让学生谈谈本节课的收获,教师加以梳理,最后质疑解惑。
[设计意图:让学生将知识系统化、条理化,对在获取新知中体现出的数学思想方法进行反思,从而加深对知识的理解。]
五、板书设计
乘法分配律
(3+5)×10=3×10+5×10
(4+6)×8=4×8+6×8
(30+25)×2=30×2+25×2
(35+65)×5=35×5+65×5
(2+3)×5=2×5+3×5
(a+b)×c=a×c+b×c
乘法分配律教学设计方案【第四篇】
设计说明
教材中本单元的一个鲜明特点是不仅给出一些数值计算的实例,让学生通过计算发现规律,而且结合学生熟悉的问题情境,帮助学生体会运算定律在现实生活中的应用。这样便于学生依据已有的知识经验,分析比较不同的解决问题的方法,从而引出运算定律。因此,对于乘法分配律的教学,本教学设计注重体现以下三点:
1.游戏激趣,设置悬念。
在游戏中学习,体现了玩中学,做中学的理念,让学生体会到玩中有乐,乐中有疑。上课伊始,通过游戏创设情境,设置悬念,把全班学生分成两组进行计算比赛,通过对比赛结果的质疑引发学生对新知的探究欲望。
2.观察、比较,举例验证猜想。
在学习新知的过程中,我把乘法分配律的知识放在具体的生活情境中,让学生通过运用多种计算方法去感知解决问题的多样化,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证,在这样的学习过程中,让学生感受数学家发现规律的过程,从而积累丰富的探究数学知识的经验。
3.多角度练习,强化认识和理解。
小学数学练习题在整个数学教学中所占的比重很大,数学基础知识的巩固和掌握,解题技能、技巧的形成,以及思维能力的培养等都离不开练习题。因此,在本节课的练习设计上,我力求有针对性、有梯度地设题,同时也注重知识的延伸。
课前准备
教师准备多媒体课件
教学过程
⊙游戏激趣
1.比赛热身。
师:同学们,请大家准备好纸和笔,在学习新内容前,我们先进行一个小小的数学热身赛。
师:请看大屏幕,左边的两组同学计算大屏幕上第(1)小题,右边的两组同学计算大屏幕上第(2)小题,看哪边的同学计算得又对又快。
(1)9×37+9×63 (2)9×(37+63)
2.评出胜负。
师:做完的同学请举手,汇报计算过程。
师:通过同学们的汇报,可以看出右边的同学做得比较快,你们知道这是为什么吗?这两道题有什么联系吗?
预设
生:虽然这两道题的算式和运算顺序不同,但计算结果相同,可以用等号连接这两道算式,即9×37+9×63=9×(37+63)。
师:同学们说得非常好,尤其是__,我们就先将他的这个发现命名为__猜想。
设计意图:借助数学热身赛激发学生的学习兴趣,让学生感知简算方法,猜测其中可能存在的数学规律,从而激发学生探究的欲望,为学习新知做好了情感铺垫。
⊙引导探究,发现规律
1.课件出示例7。
一共有多少名同学参加了这次植树活动?
(1)需要知道哪些条件?请在情境图里找一找。(出示情境图)
(2)把相关信息组织起来编成一道实际问题,并口述出来。(我校学生参加植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。一共有多少名同学参加了这次植树活动)
(3)小组讨论,尝试用不同的方法解决问题并板书。
引导各小组汇报解题方法,并说明这样解题的理由。
解法一(4+2)×25
=6×25
=150(名)
(4+2是求每组一共有多少名同学,再乘25就求出了25个小组一共有多少名同学)
解法二4×25+2×25
=100+50
=150(名)
(4×25是求25个小组一共有多少名同学负责挖坑、种树,2×25是求25个小组一共有多少名同学负责抬水、浇树,再把它们加起来就是求一共有多少名同学)
2.观察算式,探究发现。(见课堂活动卡)
(1)小组合作,讨论探究。
①两道算式有什么相同点?
②两道算式有什么不同点?
③两道算式有什么联系?