首页 > 学习资料 > 教育其它 >

离散数学论文 项目驱动式教学法在离散数学教学中的应用论文实用5篇

网友发表时间 2881445

【导言】此例“离散数学论文 项目驱动式教学法在离散数学教学中的应用论文实用5篇”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

数学论文离散数学1

摘 要: 离散数学是高校计算机类专业的必修课程之一,但由于课程本身的特点使得这门课程的学习有一定的难度,本文主要针对教授这门课程提出了几点具体的方法。

关键词: 大学离散数学 教学方法 课堂教学

离散数学是现代数学的一个重要分支,是研究离散的结构和相互间关系的学科,是计算机科学技术的支撑学科之一。离散数学的教学由于知识点较多,课时有限,课容量大,教师注重严密性与逻辑性,强调对概念、原理的掌握,导致学生学习的过程中感觉枯燥无味,记不住太多的知识点,会有捡了芝麻又丢了西瓜的感觉。这些客观原因对教师提出了严格的要求,必须充分准备采用多种教学方法,使抽象的概念形象化,帮助学生的理解和记忆,以便于学生在有限的时间内掌握更多的知识点。

教师要想上好一节课,必须拿出上课时间三倍的时间来备课。教师首先要吃透教材,只有熟悉了教材才能顺利完成教学任务,熟悉教材不仅包括掌握课本上的内容,而且要深入到更深的`层次上。

比如在讲欧拉图和哈密顿图的过程中,教师可以在上课前通过上网查资料,弄清楚欧拉图是欧拉通过哥尼斯堡七桥问题抽象出来的。尼斯堡是位于普累格河上的一座城市,它包含两个岛屿和连接它们的七座桥,该河流经城区的这两个岛,岛与河岸之间架有六座桥,另一座桥则连接着两个岛。星期天散步已成为当地居民的一种习惯,但试图走过这样的七座桥,而且每桥只走过一次却从来没有成功过,但直至引起瑞士数学家欧拉注意之前,没有人能够解决这个问题。通过这样一个有意思的小故事引出欧拉图,学生就很容易记住欧拉图讲的是边不能重复的问题。在讲哈密顿图时,教师可以介绍一下哈密顿周游世界问题,从正十二面体的一个顶点出发,沿着正十二面体的棱前进,要把十二面体顶点无一遗漏地全部通过,而每个顶点恰好只通过一次,最后回到出发点。在这个问题刚提出来时,生产商以为这是一个难题,专为此设计了一个玩具,以为可以吸引消费者,谁知当这玩具推出市场时,这个问题立刻被人解决了,令生产商损失了一大笔钱。学生可以在笑声中很容易地记住哈密顿图是点不重复问题,知道这两个图的区别。这些都要求教师在备课的过程中要充分准备各种资料。

教师在开始离散数学的教学之前应先简单介绍一下这门课程的重要意义及作用,点明离散数学对其后续课程的基础作用,让学生意识到这门课程在整个专业课程中的地位。学生只有提高了学习的积极性,才会主动地去学习,而不是被动地接受老师填鸭式的教学。教师应先把整个教材的内容分成几个小部分,把每一部分的结构帮学生梳理清楚,简单介绍一下每部分的主要内容。以耿素云的《离散数学》为例,教师可以通过列表的方法把整个教材分成五个部分,这样子可让学生在学习之前就大体了解离散数学的框架。

在上课的过程中,教师要采用多种教学方法。离散数学定义特别多,不太适用传统教学手段像黑板板书之类的,这就要求教师采用现代化的教学方法多媒体,而对数学来讲单纯多媒体教学效果不是特别好,所以应该将这两种教学方法相结合。在课堂上教师应注意学生对这节课教学内容的反馈,多问几个“听明白了吗”,“有没有问题”,不能只注重教,要注重教学效果,要重视学生的情绪,及时调整教学进度,把学生的思路引进到教学活动中来,使之兴趣盎然。比如在讲数理逻辑这一部分内容时,教师可以多举几个实际问题的例子,以便引起学生的兴趣。在讲关键路径时,在定义描述中最早完成时间是沿最长路径到达目的地所需要的时间,大部分学生对这个最长路径不理解。我给学生举了个简单的例子:在工程的盖楼过程中,假设盖好一层楼需要两个必须步骤,一是买水泥做钢筋混凝土,二是打木桩,在盖楼的过程中,买水泥需要两周的时间,做混凝土需要三周,而打木桩需要四周,那么现在盖起楼的最早完成时间是五周,取决于时间最长的那个步骤。这样通过一个简单的例子,学生就记住最早完成时间的概念。教学方法只是一种手段,而不是教学目的,甚至可以对某些内容设计几套方案,以防止种种可能出现的结果,做到有备无患。

在离散数学的教学过程中要讲求教学的针对性,离散数学是计算机类专业普遍开设的一门专业基础课,这就决定了其面向特定的学生,这要求教师要注重学生的学科特点和内容的针对性。计算机学科的发展速度很快,课本的内容可能有些已经跟不上时代的发展,教师需要在教学过程中多去查资料,运用互联网的资源,把最先进最前沿的学科知识介绍给学生,不断更新引例,使授课内容更具时代特色和生活气息。比如在讲最短路径时,教师可以找一个运用到最短路径的实际例子,把这个问题的程序给学生运行一下,让学生明白所学到的知识点和实际问题有什么联系。另外一个问题是在讲特殊的图时,可以结合实际,比如说教务处安排考试的问题,要求教务处七天安排七门考试,同一个老师担任的几门课程不能排在相邻的两天,并且已知一个老师最多担任四门课程,问题是教务处能否安排出可行的考试方案。我在讲课的过程中提到这个问题时,本来已经介绍过几种特殊的图,但学生感觉内容太多接受不了,可是一听考试并且和自己密切相关,顿时打起精神,纷纷讨论怎么安排可行,这就把课堂气氛搞活跃了。最初学生并不能联想到把这个转化成图的问题,我就一步一步地引导,告诉他们先把实际问题转化成图的问题画在纸上,然后看看题目要求的这个图具有什么特性。最后学生才恍然大悟,原来是哈密顿通路问题,这样子这一节课的教学效果就会比较好。

检查学生掌握程度的手段是测试,但是不能让测试成为学生的压力,让他们对离散数学的学习产生抵触程序。考试是衡量学生学习水平的重要手段,应该为教学而考试,而不是为考试而教学,学生掌握这门课程才是教师教的目的。

学习知识的目的是为了培养学生动手能力,同时也加深他们对该课程在专业教学中地位的理解和认识。在离散数学的教学过程中,教师应尝试在传统教学内容的基础上,适当增加上机实验操作的教学模式。教师在探索的基础上,应不断丰富实验内容,在量的积累的基础上达到质的飞跃,从而建立一套完备的离散数学的教学方法,进一步提高离散数学在计算专业中的地位。

参考文献:

[1]罗幼芝。提高离散数学实践性教学的探讨。湖北生态工程职业技术学院学报,2009,Vol7,:25-28.

[2]离散数学课程教学改革探索与实践。计算机教育,,6:100-103.

[3]谈《离散数学》课程教学实践。凯里学院学报,2009,,:23-27.

数学论文离散数学2

摘 要离散数学是计算机科学与技术专业一门重要的专业基础课。本文对离散数学的教学内容、教学手段及教学方法进行了探讨。首先根据学校技术应用型大学的办学方略,精选教学内容,注重知识应用能力;其次探讨了教学手段和方法,通过课程引入激发学习兴趣,注重课堂讨论分析,加强实验教学,注重类比归纳,进行多媒体辅助教学,从而提高离散数学的教学效果。

关键词离散数学;教学内容;教学方法;教学手段

1.引言

离散数学是现代数学的重要分支,是计算机科学与技术专业的重要基础课,主要研究离散结构和离散数量的关系。随着计算机科学技术的迅猛发展,离散数学越来越重要,其基本理论在计算机理论研究以及计算机软件、硬件开发的各个领域都有广泛的应用[1]。

离散数学的授课内容主要分为“数理逻辑”,“集合论”,“代数结构”、“图论”,“组合分析”以及“形式语言与自动机”等几大分支,课程概念较多,定义及定理比较抽象,理论性较强[2]。在教学过程中,如果只从数学方面讲授定义定理,学生理解起来比较困难,容易对本课程的学习失去兴趣。因此,设计精彩的教学内容,改进教学方法,探讨教学手段,以提高学生学习的主动性和积极性,具有重要的意义 。

2.精选教学内容 改变教学观念

精选教学内容

离散数学是计算机科学与技术本科专业的一门基础课,众多本科高校均开设此课程,其教材也非常丰富。因此,需要教师在符合学校自身办学方略和培养目标的基础上,精选教学内容。笔者工作单位上海电机学院是一所具有技术应用型本科内涵实质和行业大学属性特征的全日制普通本科院校,办学方略注重“技术立校,应用为本”,因此从学校学生培养方案和学校特色出发,对本课程的教学不能照搬研究型大学的授课方式和教学内容。应该从学生的自身素质以及课程应用性的角度出发精选授课内容,培养学生对课程内容的实际应用能力,让学生从枯燥的数学概念中走出来,达到学以致用的目的。

改变教学观念

在离散数学课程的教学过程中,如果采取传统的教师讲授,学生课堂听课的方式,学生普遍觉得内容枯燥,提不起学习兴趣。因此教师应在传统课堂教学方法的基础上,注重学生的发展和参与,应“以教师为主导,以学生为主体”,在授课过程中从教师为主体变为以学生为主体,在教学过程中设置问题情境,启发学生主动思考,激发学生学习兴趣。

如在讲授图论中最短路径的Dijkstra算法时,如果只是教师讲授算法,学生理解起来比较困难,对算法的具体应用也无法熟练掌握。教师在授课中可结合计算机网络实例,从实际问题出发,让学生根据实际案例探索算法,发表自己的观点,主动的参与到学习过程中。教师在这个过程从讲台走入到学生中间,与学生交流,引导学生对知识从浅到深的分析和理解,并控制学生探讨时间,最后带动学生归纳总结,让学生作为主体参与在课堂教学过程中,培养学生掌握完整的知识体系。

3.改进教学方法,研究教学手段

在教学过程中,运用好的教学方法和教学手段,可以激发学生学习离散数学的兴趣,提高授课质量,帮助学生系统性的掌握所学知识并加以运用。

注重课程引入

离散数学的定义比较多,学生在学习过程中经常觉得课程的概念非常多,很难掌握并很容易忘记。这就需要教师在讲授定义和定理时,注重知识引入的过程,启发学生学习兴趣并留下深刻的印象。如在讲授命题符号化时,如果直接给出命题符号化的定义,学生不知道这个定义在实际问题如何应用。在讲解过程中,可首先给出一些大家在日常生活中常见的语句,让学生判断语句真假,往往会引起学生的兴趣,在此之后引导学生思考如何将这些语句用数学方式描述,进而给出命题符号化的概念。通过这样的引入,学生对定义的理解会比较透彻,可以做到知其然并知其所以然。

教师还可以在课堂最后,提出趣味性的问题,让学生课下思考,作为下一堂课的引入。如在讲解欧拉图的概念之前,可画一幅图让学生思考是否可以一笔画成,学生会非常踊跃的回答并在课下做出思考,这样在下节课讲授时,学生会非常感兴趣,促进了学生对知识的渴求和理解。

课堂讨论分析

在离散数学教学过程中,如果教师在讲台上一味的讲解,学生听课时很容易觉得枯燥和疲劳。在授课过程中,教师可以围绕授课内容,提出一些问题进行讨论,带动学生思考。同时,鼓励学生在课堂上提出问题,教师可以安排学生之间互相讨论。如在讲授谓词逻辑中的推理理论时,可以举实际生活中趣味推理的例子,让学生理解知识如何运用,并让学生思考自己在平时遇到的推理问题是否可以用课上的知识解决。通过这样的启发讨论,学生对知识的学习兴趣很高并可以做到举一反三,透彻掌握知识内容。

加强实验教学

离散数学的基本理论在计算机领域内有着广泛应用,因此在授课过程中应避免单一的理论教学,逐步加强实验教学,将离散数学的理论与计算机实践及其他课程有机结合[3]。如在讲授最优树的Huffman算法时,可以开展实验课,在讲授算法原理的同时,将学生带入实验机房,让学生自己设计算法流程图,并编写程序,通过上机的方式掌握算法的本质。通过实验教学,学生可将所学理论应用于实际案例中,加深对知识的理解,还可以提高学生的学习兴趣和编程能力,并掌握所学内容与其他相关计算机知识的联系,培养了学生综合运用知识的能力。

注重类比归纳总结

离散数学的概念较多,内容抽象,学生难以理解,但是很多内容之间则存在一定的联系,教师可通过类比归纳的方式,帮助学生理解。如数理逻辑中,谓词逻辑的推理理论和命题逻辑的推理理论,在理解上有一定的联系,因此在讲授谓词逻辑的过程中,可以与命题逻辑的推理论相比较,分析异同。再如图论中的欧拉图和哈密尔顿图的定义,可以用类比的方法,让学生直观理解二者的含义和区别[4]。同时,教师可以在授课过程中适时的归纳总结。比如学完数理逻辑后,可以对数理逻辑的两章内容进行归纳,提取出知识主线,加强学生对知识由浅入深的掌握。

多媒体辅助教学

在离散数学的教学过程中,可以灵活的采取多媒体辅助教学。教师可根据教学内容的不同增加趣味性的背景知识,通过图像、声音和动画,使学生直观的接受新内容。采用多媒体辅助教学,不是意味着教师用PPT把授课的内容逐行展示,这样和传统的板书教学差别不大。教师应该将传统的教学方式与多媒体教学相结合,如“图论部分”,在讲授欧拉图,哈密尔顿图,最小生成树等内容时,可将重要内容用Flash动画的形式进行动态展示,在做动画的过程中从学生的角度出发,灵活的加入声音、图像,吸引学生兴趣,这样学生可以很容易的理解算法,增加了学习的直观性。

4.总结

作为计算机专业重要的基础课,离散数学广泛应用于计算机的各个领域。因此,提高教学质量,改进教学手段,探讨教学方法,成为教师在授课过程中一直不断探索的课题。本文根据笔者的教学经验,从教学内容、教学观念、教学方法和教学手段几个方面进行了探讨。在今后的课程教学中,我们还需不断创新教学方法,使离散数学课程的教学质量和效果进一步提高。

参考文献:

[1] 耿素云,屈婉玲,张立昂。 离散数学[M]. 第四版。 北京:清华大学出版社,2008.

[2] 左孝凌,李为鑑, 刘永才。 离散数学[M]. 上海: 上海科学技术文献出版社,1982.

[3] 郭晓姝。离散数学教学模式改进探讨[J]. 计算机教育,2012(3):69-72.

[4] 赵青杉,孟国艳。 关于离散数学教学改革的思考[J]. 忻州师范学院学报,2005(5):65-68.

离散数学数学论文3

摘要:起初,集合论主要是对分析数学中的“数集”或几何学中的“点集”进行研究。但是随着科学的发展,集合论的概念已经深入到现代各个方面,成为表达各种严谨科学概念必不可少的数学语言。随着计算机时代的到来,集合的元素已由传统的“数集”和“点集”拓展成包含文字、符号、图形、图表和声音等多媒体信息,构成了各种数据类型的集合。

关键词:集合论、计算机、应用

1、集合论的历史。

集合论是一门研究数学基础的学科。集合论是现代数学的基础,是数学不可或缺的基本描述工具。可以这样讲,现代数学与离散数学的“大厦”是建立在集合论的基础之上的。21世纪数学中最为深刻的活动,就是关于数学基础的探讨。这不仅涉及到数学的本性,也涉及到演绎数学的正确性。数学中若干悖论的发现,引发了数学史上的第三次危机,而这种悖论在集合论中尤为突出。

集合论是德国著名数学家康托尔()于19世纪末创立的。

十七世纪数学中出现了一门新的分支:微积分。在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果。其推进速度之快使人来不及检查和巩固它的理论基础。十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动。正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端。

经历二十余年后,集合论最终获得了世界公认。到二十世纪初集合论已得到数学家们的赞同。数学家们乐观地认为从算术公理系统出发,只要借助集合论的概念,便可以建造起整个数学的大厦。在1900年第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“??数学已被算术化了。我们可以说,现在数学已经达到了绝对的严格。”然而这种自得的情绪并没能持续多久。

这一仅涉及集合与属于两个最基本概念的悖论如此简单明了以致根本留不下为集合论漏洞辩解的余地。号称“天衣无缝”、“绝对严密”的数学陷入了自相矛盾之中。从此整个数学的基础被动摇了,由此引发了数学史上的第三次数学危机。

危机产生后,众多数学家投入到解决危机的工作中去。1908年,德国数学家策梅罗()提出公理化集合论,试图把集合论公理化的方法来消除悖论。他认为悖论的出现是由于康托尔沒有把集合的概念加以限制,康托尔对集合的定义是含混的.策梅罗希望简洁的公理能使集合的定义及其具有的性質更为显然。策梅罗的公理化集合论后来演变成ZF或ZFS公理系统。从此原本直观的集合概念被建立在严格的公理基础之上,从而避免了悖论的出现。这就是集合论发展的第二个阶段:公理化集合论。与此相对应,在1908年以前由康托尔创立的集合论被称为朴素集合论。

2、集合论在计算科学中的应用。

集合论在计算机科学中的应用集合论包括集合、关系和函数3部分。1)集合集合不仅可以表示数,而且可以像数一样进行运算,还

可以用于非数值信息的表示和处理,如数据的增加、删除、排序以及数据间关系的描述,有些很难用传统的数值计算来处理的问题,却可以用集合来处理。因此,集合论在程序语言、数据结构、数据库与知识库、形式语言和人工智能等领域得到了广泛应用。2)关系关系也广泛地应用于计算机科学技术中,例如计算机程序的输入和输出关系、数据库的数据特性关系和计算机语言的字符关系等,是数据结构、情报检索、数据库、算法分析、计算机理论等计算机领域中的良好数据工具。另外,关系中划分等价类的思想也可用于求网络的最小生成树等图的算法中。3)函数函数可以看成是一种特殊的关系,计算机中把输入、输出间的关系看成是一种函数。类似地,在开关理论、自动机原理和可计算性理论等领域中,函数都有极其广泛的应用,其中双射函数是密码学中的重要工具。

起初,集合论主要是对分析数学中的“数集”或几何学中的“点集”进行研究。但是随着科学的发展,集合论的概念已经深入到现代各个方面,成为表达各种严谨科学概念必不可少的数学语言。

随着计算机时代的到来,集合的元素已由传统的“数集”和“点集”拓展成包含文字、符号、图形、图表和声音等多媒体信息,构成了各种数据类型的集合。集合不仅可以用来表示数及其运算,更可以用来表示和处理非数值信息。数据的增加、删除、修改、排序以及数据间关系的描述等这些很难用传统的数值计算操作,可以很方便地用集合运算来处理。从而集合论在编译原理、开关理论、信息检索、形式语言、数据库和知识库、CAD、CAM、CAI及AI等各个领域得到了

广泛的应用,而且还得到了发展,如扎德(Zadeh)的模糊集理论和保拉克(Pawlak)的粗糙集理论等等。集合论的方法已经成为计算科学工作者不可缺少的数学基础知识。

参考文献:〔1〕屈婉玲,耿素云,等。离散数学[M]。北京:高等教育出版社,20xx。

〔2〕KennethH。Rosen。离散数学及其应用[M]。北京:机械工业出版社,20xx。

〔3〕陈敏,李泽军。离散数学在计算机学科中的应用[J]。电脑知识与技术,20xx。

〔4〕龚静,王青川。数理逻辑在计算机科学中的`应用浅析[J]。青海科技,20xx。

离散数学论文4

离散数学论文

摘要:起初,集合论主要是对分析数学中的“数集”或几何学中的“点集”进行研究。但是随着科学的发展,集合论的概念已经深入到现代各个方面,成为表达各种严谨科学概念必不可少的数学语言。随着计算机时代的到来,集合的元素已由传统的“数集”和“点集”拓展成包含文字、符号、图形、图表和声音等多媒体信息,构成了各种数据类型的集合。

关键词:集合论、计算机、应用

1、集合论的历史。

集合论是一门研究数学基础的学科。集合论是现代数学的基础,是数学不可或缺的基本描述工具。可以这样讲,现代数学与离散数学的“大厦”是建立在集合论的基础之上的。21世纪数学中最为深刻的活动,就是关于数学基础的探讨。这不仅涉及到数学的本性,也涉及到演绎数学的正确性。数学中若干悖论的发现,引发了数学史上的第三次危机,而这种悖论在集合论中尤为突出。

集合论是德国著名数学家康托尔()于19世纪末创立的。

十七世纪数学中出现了一门新的分支:微积分。在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果。其推进速度之快使人来不及检查和巩固它的理论基础。十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动。正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端。

经历二十余年后,集合论最终获得了世界公认。到二十世纪初集合论已得到数学家们的赞同。数学家们乐观地认为从算术公理系统出发,只要借助集合论的概念,便可以建造起整个数学的大厦。在19第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“??数学已被算术化了。我们可以说,现在数学已经达到了绝对的严格。”然而这种自得的情绪并没能持续多久。

这一仅涉及集合与属于两个最基本概念的悖论如此简单明了以致根本留不下为集合论漏洞辩解的余地。号称“天衣无缝”、“绝对严密”的'数学陷入了自相矛盾之中。从此整个数学的基础被动摇了,由此引发了数学史上的第三次数学危机。

危机产生后,众多数学家投入到解决危机的工作中去。19,德国数学家策梅罗()提出公理化集合论,试图把集合论公理化的方法来消除悖论。他认为悖论的出现是由于康托尔沒有把集合的概念加以限制,康托尔对集合的定义是含混的.策梅罗希望简洁的公理能使集合的定义及其具有的性質更为显然。策梅罗的公理化集合论后来演变成ZF或ZFS公理系统。从此原本直观的集合概念被建立在严格的公理基础之上,从而避免了悖论的出现。这就是集合论发展的第二个阶段:公理化集合论。与此相对应,在1908年以前由康托尔创立的集合论被称为朴素集合论。

2、集合论在计算科学中的应用。

集合论在计算机科学中的应用集合论包括集合、关系和函数3部分。1)集合不仅可以表示数,而且可以像数一样进行运算,还

可以用于非数值信息的表示和处理,如数据的增加、删除、排序以及数据间关系的描述,有些很难用传统的数值计算来处理的问题,却可以用集合来处理。因此,集合论在程序语言、数据结构、数据库与知识库、形式语言和人工智能等领域得到了广泛应用。2)关系关系也广泛地应用于计算机科学技术中,例如计算机程序的输入和输出关系、数据库的数据特性关系和计算机语言的字符关系等,是数据结构、情报检索、数据库、算法分析、计算机理论等计算机领域中的良好数据工具。另外,关系中划分等价类的思想也可用于求网络的最小生成树等图的算法中。3)函数函数可以看成是一种特殊的关系,计算机中把输入、输出间的关系看成是一种函数。类似地,在开关理论、自动机原理和可计算性理论等领域中,函数都有极其广泛的应用,其中双射函数是密码学中的重要工具。

起初,集合论主要是对分析数学中的“数集”或几何学中的“点集”进行研究。但是随着科学的发展,集合论的概念已经深入到现代各个方面,成为表达各种严谨科学概念必不可少的数学语言。

随着计算机时代的到来,集合的元素已由传统的“数集”和“点集”拓展成包含文字、符号、图形、图表和声音等多媒体信息,构成了各种数据类型的集合。集合不仅可以用来表示数及其运算,更可以用来表示和处理非数值信息。数据的增加、删除、修改、排序以及数据间关系的描述等这些很难用传统的数值计算操作,可以很方便地用集合运算来处理。从而集合论在编译原理、开关理论、信息检索、形式语言、数据库和知识库、CAD、CAM、CAI及AI等各个领域得到了

广泛的应用,而且还得到了发展,如扎德(Zadeh)的模糊集理论和保拉克(Pawlak)的粗糙集理论等等。集合论的方法已经成为计算科学工作者不可缺少的数学基础知识。

参考文献:〔1〕屈婉玲,耿素云,等。离散数学[M]。北京:高等教育出版社,。

〔2〕KennethH。Rosen。离散数学及其应用[M]。北京:机械工业出版社,。

〔3〕陈敏,李泽军。离散数学在计算机学科中的应用[J]。电脑知识与技术,。

〔4〕龚静,王青川。数理逻辑在计算机科学中的应用浅析[J]。青海科技,。

离散5

离散

这几天天气都冷的恐怖。穿得很棉,手和脚却还是冰冰凉的。漠然。

昨天是冬游。去了绍兴。印象比较深的是鲁镇,我们一行人到鲁镇的时候人还比早,走在古色古香的鲁镇上,不知怎的,浮躁的心平静下来。喜欢那黛瓦黑墙,喜欢那小巷蜿蜒,喜欢那灯笼高悬,喜欢那狭长的乌篷船,喜欢那剥落了油漆的红木门。可是不一会儿,后面的人就蜂拥而来,让这个原本清幽的街道变得沸腾起来,虽然看似喜气洋洋的。但我还是喜欢人少幽静的鲁镇。

小桥,流水,人家,典型的江南风景的代表。我不知道,自古以来有多少人醉心于其间,也不知道,有多少人,会继续贪恋这般惬意的风景画。但至少,我觉得它是奇迹。驻足在这里,能让人忘了一切辛酸苦楚,颠覆流离,人情冷暖以及世态炎凉。也许只是暂时的麻醉,其实也是好的。

走在这风景如画的鲁镇里,与许多形形色色的人擦肩而过,小A是我小学同学,小B是我初中同学,小C与我在网上联系频繁,小D是我亲戚的孩子。有好些人并带着欢跃的笑容与我擦肩而过,并没有太多次停下来叫他们。算了吧。既然已经离散。我们就要义无返顾地向前走。那些熟悉而陌生的身影已经渐渐走远。没关系。能看到他们开心的。面容,他们应该很幸福吧?那就好了,没有遗憾了。

那时碰到我们还会互相打招呼问好吧?可是为什么现在看到都默不做声呢?不是时间越长就应该越习惯么?.看到了。垂下眼。擦肩而过。近在咫尺,却相距天涯。我知道身上原汩汩流出的血液,已经结痂。但有些痕迹,是不会褪去的。就像被挤掉了脓的豆豆。还是会留下淡淡的红斑。在某个十字路口。我们已经离散了。向左看向右看。看不见离去的脚印。

在离散之后,开始对记忆着迷。站在一条河流旁,时间是水,回忆是水波中的容颜。若隐若现。被风一吹,就成了支离破碎的脸。

相关推荐

热门文档

23 2881445