首页 > 学习资料 > 教育其它 >

等腰三角形说课稿【汇集10篇】

网友发表时间 3525289

全球经济面临挑战,各国政策调整应对通胀与增长,科技进步推动产业变革,气候变化引发关注,国际关系复杂多变,未来发展需平衡多重利益。下面是勤劳的小编为大家分享的等腰三角形说课稿【汇集10篇】范例,欢迎借鉴参考。

《等腰三角形》教学反思 【第一篇】

等腰三角形作为特殊三角形的典范,既是三角形、轴对称等知识的深化,又是证明角相等、线段相等、直线垂直的常用依据,也为三角形相似、三角形全等等后继知识的学习,奠定了坚实的基础。八年级的学生,从心理发展水平决定学习的思维特征由经验型推理向演绎推理过度,依赖于直观经验作出相应的判断和猜想,有了初步的推理验证意识。

根据《义务教育数学课程标准》内容,要求落实“四基”,课堂教学要体现教学的过程性、互动性和生成性,要充分关注学生的主体地位,凸显学生对知识的主动构建、对数学基本活动经验的积累和对数学思想方法的感悟。我在本节课的教学设计中,采用了问题激趣引发思考,将学生掌握的等腰三角形概念和三角形的高、中线等已有知识经验与新知进行桥接。针对学习主题,指导学生设计学习方案,逐步积累设计的活动经验。学生主动开展操作实验、观察猜想、推理论证的探究性学习,得到等腰三角形的性质,关注其动手实践、观察猜想的直接活动活动经验和推理论证、符号抽象的间接活动经验的积累。学生在我将用多媒体辅助教学呈现教学情境中,积极参与,对等腰三角形的性质证明,多角度的展开,活跃了思维,积累了一题多证的解题经验。

在进一步在变式训练中,学生通过应用性质的解释现象,解决问题,促使经验内化为思想,外化为解题的方法。课堂中学生充分展示学习收获,积极开展互评互议,体验成功的乐趣,学会客观的评价,初步感受到了数学学习的探究性和合作交流的必要性。

本节课的设计和实施中需要改进的地方:

①设计的练习,对学生准确运用性质符号有序推理考察反馈的显少。

②变式练习在完成的过程中留给学生思考的时间较少,限制了学生解决问题的直接经验的积累和思想方法的感悟。

③对于证明角度相等,未将“等边对等角”与全等证明进行比较辨析,促进学生将获得知识和积累经验内化到已知的认识体系。

④对等腰三角形的性质的应用条件限制未进行判断辨析,易导致学生将“三线合一”性质泛化到腰上。

等腰三角形 【第二篇】

知识结构:

重点与难点分析:

本节内容的重点是定理。本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点。推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论。

本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反。学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点。另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法。由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用。

教法建议:

本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:

(1)参与探索发现,领略知识形成过程

学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言。最后找一名学生用文字口述定理的内容。这样很自然就得到了定理。这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。

(2)采用“类比”的学习方法,获取知识。

由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。

(3)总结,形成知识结构

为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形?

一。教学目标 

1.使学生掌握定理及其推论;

2.掌握等腰三角形判定定理的运用;

3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

4.通过自主学习的发展体验获取数学知识的感受;

5.通过知识的纵横迁移感受数学的辩证特征。

二。教学重点定理

三。教学难点 性质与判定的区别

四。教学用具:直尺,微机

五。教学方法:以学生为主体的讨论探索法

六。教学过程 

1、新课背景知识复习

(1)请同学们说出互逆命题和互逆定理的概念

估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?

启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:

1.定理如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(简称“等角对等边”).

由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法。

已知:如图,△ABC中,∠B=∠C.

求证:AB=AC.

教师可引导学生分析:

联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形。因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起。再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.

注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆。

(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形。

(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系。

2.推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

要让学生自己推证这两条推论。

小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理。

证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.

3.应用举例

例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。

分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和。要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系。

已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

求证:AB=AC.

证明:(略)由学生板演即可。

补充例题:(投影展示)

1.已知:如图,AB=AD,∠B=∠D.

求证:CB=CD.

分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.

证明:连结BD,在 中, (已知)

(等边对等角)

(已知)

(等教对等边)

小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系。

2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.

分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论。

证明: DE//BC(已知)

BE=DE,同理DF=CF.

EF=DE-DF

EF=BE-CF

小结:

(1)等腰三角形判定定理及推论。

(2)等腰三角形和等边三角形的证法。

七。练习

教材 中1、2、3.

八。作业

教材 中 )、2)、3);2、3、4、5.

九。板书设计 

等腰三角形说课稿 【第三篇】

一、说教材分析:

1. 教材内容:

本课是九年义务教育课程标准实验教科书七年级(下)章等腰三角形,本课内容在初中数学教学中起着比较重要的作用。通过等腰三角形的特征反映在一个三角形中等边对等角关系,并且对轴对称图形特征的直观反映(三线合一),对以后直角三角形和相似三角形学习起到相当重要的作用。

2、教学目标:

(1)认知目标:

要求学生掌握等腰三角形的特征和三线合一的特征,使学生会用等腰三角形的特征进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法;

(2)能力目标:培养观察能力、分析能力、联想能力、表达能力;使学生初步学会分析几何证明题的思路,从而提高学生的逻辑思维能力及分析问题、解决问题的能力;

(3)情感目标:通过亲自动手,发现“等腰三角形两底角相等”和“三线合一”特征,对学生进行数学美育教育。

3、教学重难点:

(1)教学重点:

等腰三角形两底角相等的特征是本课的重点。

(2)教学难点:

等腰三角形“三线合一”特征的运用是本课的难点。

4、教具准备:

为了使学生了解这堂课,本节课要求学生自制若干个不同等腰三角形和一般性三角形纸片模型。

二、说教学方法:

由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习轴对称图形,对轴对称图形的分析相对比较好,再加上七年级学生思维的感官性,所以本课由学生通过翻折等腰三角形纸片去发现等腰三角形的两个特征,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,我通过实验观察,采用教具直观教学法,启发式教学法和师生互动式教学模式进行教学。

教学过程中注意师生之间的情感交流,培养学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习模式,培养学生的数形结合的思想。对于等腰三角形的“两底角相等”和“三线合一”这两个特征,通过让学生动手操作,让学生翻折不同的等腰三角形,如顶角是锐角、钝角或直角的等腰三角形,以及一般三角形的模版,从而让学生逐步通过等腰三角形的轴对称变换探索出相关的特征。针对“三线合一”这一特征,学生不容易引起重视,而它又是本课的难点和今后的广泛应用,故在教学中适当补充例题进行教学,重在引起学生对这一特征的巩固和掌握。

为充分发挥学生的'主体性和教师的主导辅助作用,教学过程中设计了七个教学环节:

(一)、温故知新,激发情趣

(二)、构设悬念,创设情境

(三)、目标导向,自然引入

(四)、设问质疑,探究尝试

(五)、启发诱导,初步运用

(六)、归纳小结,强化思想

(七)、布置作业,引导预习

三、说学生学法:

⑴知识掌握上,七年级学生在小学阶段已经接触了三角形和等腰三角形的相关知识以及刚刚学习轴对称图形和三角形内容,再加上七年级学生对于图形的直观性容易接受,所以本课安排学生通过翻折等腰三角形去发现等腰三角形的两个特征不存在太大的问题。

⑵学生学习本节课的知识障碍:学习等腰三角形的两底角相等和三线合一的应用有难度,学生不易灵活应用,容易造成应用中的掉三落四的现象,所以教学中灵活结合学生练习中可能存在的问题,进行简单明了、深入浅出的分析讲解。

⑶七年级学生的理解能力和思维特征以及生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中灵活抓住学生这一生理心理特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

⑷在心理上,老师抓住学生对数学课兴趣这有利因素,引导学生认识到数学的科学性和应用性,学好数学有利于其他学科的学习以及学科知识的渗透性。

四、说教学程序设计:

(一)、温故知新,激发情趣:

1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?

2、指出等腰三角形的腰、底边、顶角、底角。

(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。)

(二) 、构设悬念,创设情境:

3、一般三角形有哪些特征? (三条边、三个内角、高、中线、角平分线)

4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?

(把问题3作为教学的出发点,激发学生的学习兴趣。问题4给学生留下悬念。)

(三)、目标导向,自然引入:

本节课我们一起研究—— 等腰三角形

(板书课题) 等腰三角形 (了解本节课的学习内容)

《等腰三角形》教学反思 【第四篇】

本节课重点要让学生通过实践、交流、猜想、论证,得出等腰三角形"两个底角相等"、"三线合一"的性质。

“等腰三角形”是学生小学学过的、生活中常见的一类平面图形,今天讲的一定要是有别于以往的、又对旧知识做一个补充和印证的。因此我给它定位是“轴对称图形”的典型代表。从这点出发结合“探究1”让学生用不同的方法得到等腰三角形,继而复习它的相关概念,由“探究2”让学生自主探究等腰三角形的性质。实践、交流、归纳出等腰三角形的2点性质:"两个底角相等"、"三线合一"。要论证猜想的正确性,除了小学里的等腰三角形翻折的直观印证外,就要用到之前的'“证明三角形全等”这一常见方法了。在此,将猜想的命题转化成符号语言是一个初步的训练。而此命题证明的关键是“添加辅助线”,有前面两个“探究”,如何添加辅助线也就水到渠成了。这条辅助线就是图形的对称轴。结合课本76页证明过程,进一步提出:将“作底边BC的中线AD”改为“过A作底边BC的高线AD”或者“作∠BAC的平分线AD交BC于D”性质1、2是不是同样得到证明?证明过程中有什么异同?在此要给学生强调:性质2实际上包含了三个命题,需要一一证明。这点在辅助线的添加处加以说明:作中线,证高线,证平分线;作高线,证中线,证平分线或作角平分线,证高线,证中线。

性质2不容易引起学生的重视,但它的应用十分广泛,所以我在此补充了例题让学生加以巩固。

等腰三角形的2条性质对今后证明线段相等或角相等方面有很多的应用,限于课堂时间有限,没有加以补充,今后具体问题时再予总结。

等腰三角形 【第五篇】

§  (二)

教学目标

1、 理解并掌握等腰三角形的判定定理及推论

2、 能利用其性质与判定证明线段或角的相等关系。

教学重点

等腰三角形的判定定理及推论的运用

教学难点

正确区分等腰三角形的判定与性质。

能够利用等腰三角形的判定定理证明线段的相等关系。

教学过程:

一、复习等腰三角形的性质

二、新授:

i提出问题,创设情境

出示投影片。某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(b点)为b标,然后在这棵树的正南方(南岸a点抽一小旗作标志)沿南偏东60°方向走一段距离到c处时,测得∠acb为30°,这时,地质专家测得ac的长度就可知河流宽度。

学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”。

ii引入新课

1.由性质定理的题设和结论的变化,引出研究的内容——在△abc中,苦∠b=∠c,则ab= ac吗?

作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?

2.引导学生根据图形,写出已知、求证。

2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).

强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”。

4.引导学生说出引例中地质专家的测量方法的根据。

iii例题与练习

1.如图2

其中△abc是等腰三角形的是 [ ]

2.①如图3,已知△abc中,ab=ac.∠a=36°,则∠c______(根据什么?).

②如图4,已知△abc中,∠a=36°,∠c=72°,△abc是______三角形(根据什么?).

③若已知∠a=36°,∠c=72°,bd平分∠abc交ac于d,判断图5中等腰三角形有______.

④若已知 ad=4cm,则bc______cm.

3.以问题形式引出推论l______.

4.以问题形式引出推论2______.

例: 如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形。

分析:引导学生根据题意作出图形,写出已知、求证,并分析证明。

练习:5.(l)如图6,在△abc中,ab=ac,∠abc、∠acb的平分线相交于点f,过f作de//bc,交ab于点d,交ac于e.问图中哪些三角形是等腰三角形?

(2)上题中,若去掉条件ab=ac,其他条件不变,图6中还有等腰三角形吗?

iv课堂小结

1.判定一个三角形是等腰三角形有几种方法?

2.判定一个三角形是等边三角形有几种方法?

3.等腰三角形的性质定理与判定定理有何关系?

4.现在证明线段相等问题,一般应从几方面考虑?

v布置作业

1.阅读教材

2.书面作业:教材第150页第12题

3、《课堂感悟与探究》

等腰三角形 【第六篇】

章等腰三角形教案

(一)、温故知新,激发情趣:

1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?

2、指出等腰三角形的腰、底边、顶角、底角。

(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。)

(二) 、构设悬念,创设情境:

3、一般三角形有哪些特征? (三条边、三个内角、高、中线、角平分线)

4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?

(把问题3作为教学的出发点,激发学生的学习兴趣。问题4给学生留下悬念。)

(三)、目标导向,自然引入:

本节课我们一起研究—— 等腰三角形

(板书课题) 等腰三角形(了解本节课的学习内容)

(四)、设问质疑,探究尝试:

结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。

[问题]通过观察,你发现了什么结论?

(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)

[结论]等腰三角形的两个底角相等。

(板书学生发现的结论)

等腰三角形特征1:等腰三角形的两个底角相等

在△ ABC中,∵AB=AC( )

∴∠B=∠C( )

[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。

例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数。

〔学生思考,教师分析,板书〕

练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)

〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)

[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?

(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)

[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?

[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。

[结论]等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。简称为:“三线合一”。

等腰三角形特征2:

等腰三角形的顶角平分线、底边上的中线和高线互相重合(三线合一)

(出示小黑板)

[填空]根据等腰三角形特征的推论,在△ABC中

(1)∵AB=AC,AD⊥BC,

∴∠_=∠_,_=_;

(2)∵AB=AC,AD是中线,

∴∠_=∠_,_⊥_;

(3)∵AB=AC,AD是角平分线,

∴_⊥_,_=_

通过直观模具演示,引出推论2,并出示小黑板[填空]、强调“三线合一”的运用方法。使学生留下深刻印象,并通过[填空]了解三线合一的运用方法。

强调“三线合一”特征中的三线段前的定语的重要性,可让学生实际画图验证。

(五)、启发诱导,初步运用:

例2:如图,在△ABC中,AB=AC,D是BC边上的中点,

∠B=30°,求∠1和∠ADC的度数。

课堂练习:

(1)P85练习3

(2)例3已知:如图,房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC、屋椽AB=AC.求顶架上∠B、∠C、∠BAD、∠CAD的度数。

(这是一道几何计算题,要使学生加深对本课内容的应用,引导学生写出解题过程)

(六)、归纳小结,强化思想:

(1)叙述等腰三角形的特征及其应用;

(2)利用等腰三角形的特征可证明:两角相等,两线段相等,两直线互相垂直。

(3) 联想方法要经常运用,对今后解题大有裨益。

(七)、布置作业 ,引导预习:

P86 习题   1、3、4   预习课本:P85 等腰三角形

课后思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?

章等腰三角形教案

(一)、温故知新,激发情趣:

1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?

2、指出等腰三角形的腰、底边、顶角、底角。

(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。)

(二) 、构设悬念,创设情境:

3、一般三角形有哪些特征? (三条边、三个内角、高、中线、角平分线)

4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?

(把问题3作为教学的出发点,激发学生的学习兴趣。问题4给学生留下悬念。)

(三)、目标导向,自然引入:

本节课我们一起研究—— 等腰三角形

(板书课题) 等腰三角形(了解本节课的学习内容)

(四)、设问质疑,探究尝试:

结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。

[问题]通过观察,你发现了什么结论?

(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)

[结论]等腰三角形的两个底角相等。

(板书学生发现的结论)

等腰三角形特征1:等腰三角形的两个底角相等

在△ ABC中,∵AB=AC( )

∴∠B=∠C( )

[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。

例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数。

〔学生思考,教师分析,板书〕

练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)

〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)

[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?

(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)

[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?

[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。

[结论]等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。简称为:“三线合一”。

等腰三角形特征2:

等腰三角形的顶角平分线、底边上的中线和高线互相重合(三线合一)

(出示小黑板)

[填空]根据等腰三角形特征的推论,在△ABC中

(1)∵AB=AC,AD⊥BC,

∴∠_=∠_,_=_;

(2)∵AB=AC,AD是中线,

∴∠_=∠_,_⊥_;

(3)∵AB=AC,AD是角平分线,

∴_⊥_,_=_

通过直观模具演示,引出推论2,并出示小黑板[填空]、强调“三线合一”的运用方法。使学生留下深刻印象,并通过[填空]了解三线合一的运用方法。

强调“三线合一”特征中的三线段前的定语的重要性,可让学生实际画图验证。

(五)、启发诱导,初步运用:

例2:如图,在△ABC中,AB=AC,D是BC边上的中点,

∠B=30°,求∠1和∠ADC的度数。

课堂练习:

(1)P85练习3

(2)例3已知:如图,房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC、屋椽AB=AC.求顶架上∠B、∠C、∠BAD、∠CAD的度数。

(这是一道几何计算题,要使学生加深对本课内容的应用,引导学生写出解题过程)

(六)、归纳小结,强化思想:

(1)叙述等腰三角形的特征及其应用;

(2)利用等腰三角形的特征可证明:两角相等,两线段相等,两直线互相垂直。

(3) 联想方法要经常运用,对今后解题大有裨益。

(七)、布置作业 ,引导预习:

P86 习题   1、3、4   预习课本:P85 等腰三角形

课后思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?

初中数学等腰三角形的性质教案 【第七篇】

教学目标

1、掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。

教学重点

等边三角形的。判定定理和直角三角形的性质定理。

教学难点

能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。

教学方法

教学后记

教学内容及过程

一、定理:

一个角等于60°的等腰三角形是等边三角形

1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时

2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。渗透分类讨论的思维方法。

3.关注学生得出证明思路的过程,讲评。讲解定理:有一个角是60°的等腰三角形是等边三角形。

二、一种特殊直角三角形的性质

1.让学生拼摆事先准备好的三角尺,提问:能拼成一个怎样的三角形?能否拼出一个等边三角形?并说明理由。

2.肯定学生的发现和解释,在此基础上进一步深入提问:在直角三角形中,30°所对的直角边与斜边有怎样的大小关系?

3.演示规范的证明步骤,同时引导学生意识到:通过实际操作探索出的结论还需要给予理论证明。

4.让学生准备一张正方形纸片,按要求动手折叠。

5.讲解例题,应用定理。

6.布置学生做练习。

练习:课本随堂练习1

三、课堂小结

通过这节课的学习你学到了什么知识?了解了什么证明方法?

四、作业:

同步练习

等腰三角形 【第八篇】

等腰三角形的性质

几何第二册第三章,第2——4页

教学目标

(1)知识目标:1、掌握等腰三角形的两底角相等,底边上的高、

中线及顶角平分线三线合一的性质,并能运用

它们进行有关的论证和计算。

2、理解等腰三角形和等边三角形性质定理之间

的联系。

(2)能力目标:1、定理的引入培养学生对命题的抽象概括能力,

加强发散思维的训练。

2、定理的证明培养大胆创新、敢于求异、勇于

探索的精神和能力,形成良好的思维品质。

3、定理的应用,培养学生进行独立思考,提高独

立解决问题的能力。

(3)情感目标:在教学过程 中,引导学生进行规律的再发现,激发

学生的审美情感,与现实生活有关的实际问题使

学生认识到数学对于外部世界的完善与和谐,使

他们有效地获取真知,发展理性。

教学重点 等腰三角形的性质定理及其证明。

教学难点  用文字语言叙述的几何命题的证明及辅助线的添加。

达标进程

教学内容

教师活动

学生活动

一、 前置诊断,开辟道路

1、什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。

首先教师提问了解前置知识掌握情况。

动脑思考、口答。

二、 构设悬念,创设情境

1、一般三角形有哪些性质?

2、等腰三角形除具有一般三角形的性质外,还有那些特殊性质?

把问题作为教学的出发点,激发学生的学习兴趣。

问题2给学生留下悬念。

三、 目标导向,自然引入

本节课我们一起研究——等腰三角形的性质。

板书课题

了解本节课的学习内容。

四、 设问质疑,探究尝试

请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起。

[问题]通过观察,你发现了什么结论?

[结论]等腰三角形的两个底角相等。

板书学生发现的结论。

[问题]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。

[辨疑]由观察发现的命题不一定是真命题,需要证明,怎样证明?

[问题]1、此命题的题设、结论分别是什么?

2、怎样写出已知、求证?

3、怎样证明?

[电脑演示1]

[投影学生证明过程,并由其讲述]

从而引出定理 等腰三角形的两个底角相等(简写成“等边对等角”)

通过电脑演示,引导学生全面观察,联想,突破引辅助线的难关,并向学生渗透转化的数学思想。

引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。

继续观察图形

[问题]1、指出全等三角形中还有哪些

对应边、对应角相等?

2、等腰三角形的顶角的平分线又有什么性质?

设问、质疑

小组讨论,归纳总结,培养学生概括数学材料的能力。

教学内容

教师活动

学生活动

[辨疑]一般三角形是否具有这一性质呢?

[电脑演示2]

从而引出推论1 等腰三角形顶角的平分线平分底边,并且垂直于底边。

“三线合一”性质 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

[填空]根据等腰三角形性质定理的推论,在△ABC中

(1)∵AB=AC,AD⊥BC,

∴∠_=∠_,_=_;

(2)∵AB=AC,AD是中线,

∴∠_=∠_,_⊥_;

(3)∵AB=AC,AD是角平分线,

∴_⊥_,_=_。

通过电脑演示,引出推论1,并引入[填空]、强调推论1的运用方法。

电脑演示给学生对推抡1留下深刻印象,并通过[填空]了解推论1的运用方法。

五、 变式训练,巩固提高

达标练习一

A组:根据等腰三角的形性质定理

(1)等腰直角三角形的每一个锐角都等于多少度?

(2)若等腰三角形的顶角为40°,

则它的底角为多少度?

(3)若等腰三角形的一个底角为 40°,则它的顶角为多少度?

B组:根据等腰三角形的性质定理

(1)若等腰三角形的一个内角为 40°,则它的其余各角为多少度?

(2) 若等腰三角形的一个内角为120°,则它的其余各角为多少度?

(3)等边三角形的三个内角有什么关系?各等于多少度?

从而引出推论2 等边三角形的各角都相等,并且每一个角都等于60°.

题目设计遵循由易到难的原则,引导学生拾阶而上。沟通等腰三角形的性质定理和三角形内角和定理的联系,并引出推论2。

A组口答练习

B组讨论后回答。

掌握等腰三角形性质定理的应用,训练学生的类比思维,让学生获得从问题中探索共同的属性和规律的思维能力。

教学内容

教师活动

学生活动

达标练习二

A组:等腰三角形斜边上的高把直角分成两个角,求这两个角的度数。

B组:已知:如图,房屋的顶角 ∠BAC=100°。求顶架上∠B、∠C、

∠BAD、∠CAD的度数。

理论联系实际,

充分体现数学解决实际问题的作用,培养学生的应用意识,提高数学修养。

A组口答

B组独立解答。

加深理解定理及推论1,能初步灵活地运用它们进行计算和论证。

布置作业 :1、看书:P1——P3

2、课本P5 想一想

教案设计说明

本节课是在学生掌握了一般三角形基础知识和初步推论证明的基础上进行学习的,担负着训练学生会分析证明思路的任务,等腰三角形两底角相等的性质是今后论证两角相等的依据之一,等腰三角形底边上的三条主要线段重合的性质是今后论证两条线段相等、两个角相等及两条直线垂直的重要依据。因此设计时,我分别从几个方面作了精心策划:

1、创设丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,唤起与形成新知相关的旧知,从而使学生的原认知结构对新知的学习具有某种“召唤力”。

2、提供可探索性的问题,合理的设计实验过程,创造出良好的问题情境,不断地引导学生观察、实验、思考、探索,使学生感到自己就象科学家那样提出问题、分析问题、解决问题,去发现规律,证实结论。发挥学生学习的主观能动性,培养学生的探索能力、科学的研究方法、实事求是的态度。

3、在巩固应用时,训练题组的设计具有阶梯性,加强了变式训练,便于及时反馈。实际应用充分体现了数学解决实际问题的作用,培养学生的应用意识,提高数学修养。

4、利用直观教具及电化教学手段,创设了丰富的课堂教学环境,触发学生求知心向的生成,自觉地努力调集思维和旧知纷纷指向新�

等腰三角形的性质

等腰三角形 【第九篇】

课时安排4课时    从容说课    前面两节中,通过对生活中的轴对称现象的认识,进一步对轴对称的性质作了研究,还探讨了轴对称变换,能够作出一些简单的平面图形关于一条直线的对称图形,所以学生对这些结论已经有所了解。    本节在我们已学过的知识的基础上,进一步认识特殊的轴对称图形──等腰三角形,并探究等腰三角形的性质及等腰三角形的判定。在探究等腰三角形的相关问题时,再对等边三角形的相关内容进行深入探讨。    本节的重点是探索等腰三角形和等边三角形的性质及判定,并利用这些性质和判定求解相关的问题,进一步发展学生的数学思维。本节的重点同时也是本节的难点。教师在教学中,不可操之过急,应逐步引导,让学生去发现去探索这些性质,学生对它的理解要有一个过程,对它的应用也要慢慢去认识,并且在教学中要注意对学生数学思想的渗透以及分析问题、解决问题能力的培养。

§  等腰三角形(一)第七课时    教学目标    (一)教学知识点    1.等腰三角形的概念。    2.等腰三角形的性质。    3.等腰三角形的概念及性质的应用。

1.经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点。

2.探索并掌握等腰三角形的性质。    (三)情感与价值观要求    通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯。    教学重点    1.等腰三角形的概念及性质。    2.等腰三角形性质的应用。    教学难点    等腰三角形三线合一的性质的理解及其应用。    教学方法    探究归纳法。    教具准备    师:多媒体课件、投影仪;    生:硬纸、剪刀。    教学过程    ⅰ.提出问题,创设情境    [师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

[生]有的三角形是轴对称图形,有的三角形不是。

[师]那什么样的三角形是轴对称图形?

[生]满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

ⅱ.导入新课

[师]同学们通过自己的思考来做一个等腰三角形。

作一条直线l,在l上取点a,在l外取点b,作出点b关于直线l的对称点c,连结ab、bc、ca,则可得到一个等腰三角形。

[生乙]在甲同学的做法中,a点可以取直线l上的任意一点。

[师]对,按这种方法我们可以得到一系列的等腰三角形。现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本p138探究中的方法,剪出一个等腰三角形。

……

[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

[师]有了上述概念,同学们来想一想。

(演示课件)

1.等腰三角形是轴对称图形吗?请找出它的对称轴。

2.等腰三角形的两底角有什么关系?

3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

[生甲]等腰三角形是轴对称图形。它的对称轴是顶角的平分线所在的直线。因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。

[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等。

[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线。

[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴。

[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴。

[师]你们说的是同一条直线吗?大家来动手折叠、观察。

[生齐声]它们是同一条直线。

[师]很好。现在同学们来归纳等腰三角形的性质。

[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。    [师]很好,大家看屏幕。(演示课件)    等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).    2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程).    (投影仪演示学生证明过程)    [生甲]如右图,在△abc中,ab=ac,作底边bc的中线ad,因为

所以△bad≌△cad(sss).    所以∠b=∠c.    [生乙]如右图,在△abc中,ab=ac,作顶角∠bac的角平分线ad,因为         所以△bad≌△cad.    所以bd=cd,∠bda=∠cda= ∠bdc=90°.    [师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范。下面我们来看大屏幕。(演示课件)[例1]如图,在△abc中,ab=ac,点d在ac上,且bd=bc=ad,求:△abc各角的度数。    [师]同学们先思考一下,我们再来分析这个题。[生]根据等边对等角的性质,我们可以得到∠a=∠abd,∠abc=∠c=∠bdc,再由∠bdc=∠a+∠abd,就可得到∠abc=∠c=∠bdc=2∠a.再由三角形内角和为180°,就可求出△abc的三个内角。    [师]这位同学分析得很好,对我们以前学过的定理也很熟悉。如果我们在解的过程中把∠a设为x的话,那么∠abc、∠c都可以用x来表示,这样过程就更简捷。    (课件演示)    [例]因为ab=ac,bd=bc=ad,    所以∠abc=∠c=∠bdc.    ∠a=∠abd(等边对等角).    设∠a=x,则    ∠bdc=∠a+∠abd=2x,    从而∠abc=∠c=∠bdc=2x.    于是在△abc中,有    ∠a+∠abc+∠c=x+2x+2x=180°,    解得x=36°.    在△abc中,∠a=35°,∠abc=∠c=72°.[师]下面我们通过练习来巩固这节课所学的知识。    ⅲ.随堂练习    (一)课本p141练习 1、2、3.    练习

1.    如下图,在下列等腰三角形中,分别求出它们的底角的度数。        答案:(1)72°  (2)30°2.    如右图,△abc是等腰直角三角形(ab=ac,∠bac=90°),ad是底边bc上的高,标出∠b、∠c、∠bad、∠dac的度数,图中有哪些相等线段?       答案:∠b=∠c=∠bad=∠dac=45°;ab=ac,bd=dc=    如右图,在△abc中,ab=ad=dc,∠bad=26°,求∠b和∠c的度数。 答:∠b=77°,∠c=°.(二)阅读课本p138~p140,然后小结。    ⅳ.课时小结    这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用。等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。    ⅴ.课后作业    (一)课本p147─1、3、4、8题。    (二)1.预习课本p141~p143.    2.预习提纲:等腰三角形的判定。    ⅵ.活动与探究

如右图,在△abc中,过c作∠bac的平分线ad的垂线,垂足为d,de∥ab交ac于e.求证:ae=ce.     过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,等腰三角形的性质。    结果:    证明:延长cd交ab的延长线于p,如右图,在△adp和△adc中         ∴△adp≌△adc.∴∠p=∠acd.    又∵de∥ap,    ∴∠4=∠p.    ∴∠4=∠acd.    ∴de=ec.    同理可证:ae=de.    ∴ae=ce.    板书设计    §  等腰三角形(一)    一、设计方案作出一个等腰三角形    二、等腰三角形性质    1.等边对等角    2.三线合一    三、例题分析    四、随堂练习    五、课时小结    六、课后作业    备课资料    参考练习    一、选择题    1.如果△abc是轴对称图形,则它的对称轴一定是(  )      a.某一条边上的高;               b.某一条边上的中线      c.平分一角和这个角对边的直线;   d.某一个角的平分线    2.等腰三角形的一个外角是100°,它的顶角的度数是(  )      °    °    °和20°     °或50°      答案:   二、已知等腰三角形的腰长比底边多2cm,并且它的周长为16cm.      求这个等腰三角形的边长。解:设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得        2(x+2)+x=16.       解得x=4.   所以,等腰三角形的三边长为4cm、6cm和6cm.

等腰三角形 【第十篇】

一、教材分析

1、教材的地位和作用:《等腰三角形的性质》是初中几何第二册第三章《三角形(二)》的第一课时,是全等三角形的续篇。等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。 2、教材重组:《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。

3、学习目标:根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:

知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。能力目标:能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习能力。

情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。

4、教学重、难点:

重点:等腰三角形性质的探索及其应用。

难点:等腰三角形性质的探索及证明。

5、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。

二、学情分析

刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。

三、教法分析

《数学课程标准》要求教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们进行自主探索和合作交流。为了顺利达到这一目标,引导学生探索性学习,唤起学生的创新意识,我根据教材特点和学生实际,采用了以观察法、发现法、实验操作法、探究法为主的教学方法进行教学。

四、学法建构

《数学新课程标准》指出自主探索与合作交流是学生的主要学习方式,因此,通过本节教学,我将对学生进行以下学法指导:

1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多种心智能力投入,使学生始终处于主动探索状态。

2、向学生渗透探究、发现的学习方法,培养他们在合作中共同探索新知识、解决新问题的能力。

五、教学模式

本节课设计的指导思想是全日制义务教育《数学课程标准》及新课程改革的教学理念。

《数学课程标准》提出了“问题情境——建立模型——解释、运用与拓展”的基本模式,在此模式指导下,本节课我将采用“创设情境——自主探索——合作交流——引导评价——实践应用——反思归纳”的教学模式,力求着眼于学生探究能力和创造性思维能力的培养,

提高学生的自主意识和合作精神。

六、教学程序和设想

《数学课程标准》强调,教师应发扬教学民� 据此本节课我分以下环节组织教学。 (一)创设情境,观察联想。 1、多媒体展示电视转播台、房屋人字架,让学生观察找出其中的几何图形?(等腰三角形、四边形、梯形) 2、两幅图中都有哪种几何图形?(等腰三角形)

从学生身边的生活和已有知识出发,创设情境,引导学生观察、联想,使学生感受到生活中处处有数学,并学会从数学的角度去观察事物,思考问题,激发学生对学习数学的兴趣和愿望。 (二)动手操作,揭示课题。 3、什么是等腰三角形?等边三角形?它们有何关系? 4、请学生动手作等腰三角形ABC,使AB=AC。裁下这个三角形,再动手折叠,当两腰重合时,找出发现哪些结论。

5、小组交流发现的结论。(两底重合,折痕是顶角角平分线,底边上的高,底边上的中线。 )

6、小组代表用语言表达得出的结论。

7、多媒体演示折叠过程,再现归纳得出的结论。

8、揭示、板书课题:等腰三角形性质。让学生温习、重现已学相关知识,为学习新知识做铺垫。

波利亚曾说过:“学习任何知识的最佳途径都是由自己去发现。”《新课程标准》要求通过实践、思考探索、交流获得知识,所以我在这里力图通过学生动手操作、动眼观察、动口交流表达,使学生充分感知等腰三角形性质。

(三)独立思考,探究新知。

9、对于观察得出的结论是否能进行论证,请学生动手试一试。

放手让学生决定自己的探索方向,鼓励学生选用不同的方法,把期望带给学生,让学生最大限度地发现自己的潜能,使学生形成自己对数学知识的理解和有效的学习策略。

(四)合作探究,交流创新。

10、当部分同学找到了问题的突破口,而少数找不到思路的同学也充分感知了困难,尝试了困难后,及时组织学生进行合作探究和交流,并作为合作者参与到学生的交流中。

组织学生探索、交流,有利于开阔学生的视野,形成一个既有独立思考,又有互相合作,广泛交流的学习氛围,培养学生合作精神。

(五)引导评价,形成规律。

11、小组合作交流后,请各小组一名代表上台讲解(给学困生提供上台机会,让他们尝试成功的喜悦)共有三种辅助方法:作∠A的角平分线AD、作 AD⊥BC、作BC边上的中线AD。通过师生、生生的相互补充评价,将探究活动引向深入,强化学生的创新思维训练。

12、等边三角形是特殊等腰三角形,它又具有哪些性质呢?

学生探索能得出:①每个角都相等,且都是60°,②每边上的高、中线、角平分线互相重合。

运用知识迁移在新知识的基础上探索新的未知,把学生的探究兴趣进一步推向高潮,激励学生要敢于迎接挑战,不断追求,锻炼意志。

13、阅读课本:等腰三角形性质(一)(注意:等边对等角、三线合一的几何语言表达)。培养学生的阅读能力和准确的几何语言表达能力。

(六)实践应用,巩固提高。

例:已知房屋的顶角∠ABC=100°,过屋顶的立柱AD⊥BC,屋椽AB=AC,根据图中条件,你能求出哪些角的度数。

把例题改编成开放题,为学生再一次创设探究情境,进一步培养学生的探究能力和思维的广阔性、灵活性。达标练习(抢答) ①填空。设计基础练习,体现素质教育的全员性,通过抢答训练,更好地激发学生的学习兴趣和求知欲望。

②△ABC中,AB=AC,D为BC上一点,DE⊥AB,FD⊥BC交AC于F点,∠A=56°,求∠ EDF的度数通过能力训练题,提高学生分析问题和解决问题的实践能力。

③应用:某厂车间的人字屋架为等腰三角形,跨度AB=12米,为使屋架更加牢固,需安装中柱CD,你能帮工人师傅确定中柱的位置吗?说明选用的工具和原理。进一步体现数学来源于实践,又应用于实践,培养学生的应用意识和应用能力。

(七)反思归纳,形成结构。

1、引导学生对学习过程进行小结:

①本节课你有哪些收获?(知识、方法、技能),你认为重点是什么?

②所学知识能解决哪些实际问题?

③本节课所运用的学习方法对你今后学习有什么启示?

2、布置作业:(分层布置)

这样进行课堂小结,关注学生个体差异,使每一个学生都有成功的学习体验,得到相应的提高和发展,进一步培养学生的主体意识,锻炼学生的归纳总结能力。

相关推荐

热门文档

23 3525289