等腰三角形说课稿【实用17篇】
等腰三角形具有两边相等、两个角相等的特点,广泛应用于生活中。通过图形展示、性质分析,帮助学生理解其特性与应用,能否更好地掌握这些知识呢?以下由阿拉网友整理分享的等腰三角形说课稿相关文章,便您学习参考,喜欢就分享给朋友吧!
等腰三角形说课稿 篇1:
等腰三角形作为特殊三角形的典范,既是三角形、轴对称等知识的深化,又是证明角相等、线段相等、直线垂直的常用依据,也为三角形相似、三角形全等等后继知识的学习,奠定了坚实的基础。八年级的学生,从心理发展水平决定学习的思维特征由经验型推理向演绎推理过度,依赖于直观经验作出相应的判断和猜想,有了初步的推理验证意识。
根据《义务教育数学课程标准》内容,要求落实“四基”,课堂教学要体现教学的过程性、互动性和生成性,要充分关注学生的主体地位,凸显学生对知识的主动构建、对数学基本活动经验的积累和对数学思想方法的感悟。我在本节课的教学设计中,采用了问题激趣引发思考,将学生掌握的等腰三角形概念和三角形的高、中线等已有知识经验与新知进行桥接。针对学习主题,指导学生设计学习方案,逐步积累设计的活动经验。学生主动开展操作实验、观察猜想、推理论证的探究性学习,得到等腰三角形的性质,关注其动手实践、观察猜想的直接活动活动经验和推理论证、符号抽象的间接活动经验的积累。学生在我将用多媒体辅助教学呈现教学情境中,积极参与,对等腰三角形的性质证明,多角度的展开,活跃了思维,积累了一题多证的解题经验。
在进一步在变式训练中,学生通过应用性质的解释现象,解决问题,促使经验内化为思想,外化为解题的方法。课堂中学生充分展示学习收获,积极开展互评互议,体验成功的乐趣,学会客观的评价,初步感受到了数学学习的探究性和合作交流的必要性。
本节课的设计和实施中需要改进的地方:
①设计的练习,对学生准确运用性质符号有序推理考察反馈的显少。
②变式练习在完成的过程中留给学生思考的时间较少,限制了学生解决问题的直接经验的积累和思想方法的感悟。
③对于证明角度相等,未将“等边对等角”与全等证明进行比较辨析,促进学生将获得知识和积累经验内化到已知的认识体系。
④对等腰三角形的性质的应用条件限制未进行判断辨析,易导致学生将“三线合一”性质泛化到腰上。
《等腰三角形》教学反思 篇2:
本节课重点要让学生通过实践、交流、猜想、论证,得出等腰三角形"两个底角相等"、"三线合一"的性质。
“等腰三角形”是学生小学学过的、生活中常见的一类平面图形,今天讲的一定要是有别于以往的、又对旧知识做一个补充和印证的。因此我给它定位是“轴对称图形”的典型代表。从这点出发结合“探究1”让学生用不同的方法得到等腰三角形,继而复习它的相关概念,由“探究2”让学生自主探究等腰三角形的性质。实践、交流、归纳出等腰三角形的2点性质:"两个底角相等"、"三线合一"。要论证猜想的正确性,除了小学里的等腰三角形翻折的直观印证外,就要用到之前的'“证明三角形全等”这一常见方法了。在此,将猜想的命题转化成符号语言是一个初步的训练。而此命题证明的关键是“添加辅助线”,有前面两个“探究”,如何添加辅助线也就水到渠成了。这条辅助线就是图形的对称轴。结合课本76页证明过程,进一步提出:将“作底边BC的中线AD”改为“过A作底边BC的高线AD”或者“作∠BAC的平分线AD交BC于D”性质1、2是不是同样得到证明?证明过程中有什么异同?在此要给学生强调:性质2实际上包含了三个命题,需要一一证明。这点在辅助线的添加处加以说明:作中线,证高线,证平分线;作高线,证中线,证平分线或作角平分线,证高线,证中线。
性质2不容易引起学生的重视,但它的应用十分广泛,所以我在此补充了例题让学生加以巩固。
等腰三角形的2条性质对今后证明线段相等或角相等方面有很多的应用,限于课堂时间有限,没有加以补充,今后具体问题时再予总结。
初中数学等腰三角形的性质教案 篇3:
一、 教材分析
(一)、教材内容的地位和作用
《分割等腰三角形》是新教材第十四章《三角形》之后的探究课,我根据本校班级学生基础知识掌握良好、认知能力良好但是思维品质缺乏、尖子生凤毛麟角等实际情况下,降低要求设计的一节课,三角形是平面几何最简单的直线型封闭图形,三角形的知识是进一步探究学习其他图形性质的基础;这个学习阶段,处在是演绎几何向论证几何的过渡期,本章对三角形的研究呈现从一般到特殊的过程,而等腰三角形对于学生学习和研究轴对称性具有重要意义。本节课《分割等腰三角形》的设计也遵循了这个规律,从研究一般三角形到等腰三角形,探究过程中还可以帮助学生理解和掌握运用三角形知识,通过探究活动,不仅加强探索实践精神,而且还让学生感受到我国古老的数学文明,激发探索热情。
(二)、教学目标
根据新的《课程标准》要求和教材分析,结合本班学生实际情况,制定如下教学目标:
1.学会探究把一个一般的三角形分成两个等腰三角形的条件,进而会探究将一个等腰三角形分割成两个等腰三角形,计算可以被分割的等腰三角形的度数.
2.体现数形结合、分类讨论的思想。
3.培养学生的自主探究的意识,初步掌握探究的一般思路和独立思考的习惯、提高解决问题的能力.
(三)、教学重点、难点
教学重点、难点:探究把一个一般的三角形分割成两个等腰三角形的思路.
探究把一个一般的三角形分割成两个等腰三角形的一般规律。
二、 教法、学法分析
本节课涉及的知识点有等腰三角形的“等边对等角”、“等角对等边”、“三角形内角和”定理(“三角形一个外角等于和它不相邻的两个内角之和”定理),都是前阶段学生经常使用的熟悉知识,计算分割好的三角形中角之间的关系应该不难,因此本节课将用较多的时间引导学生如何根据图形探究分割的方法和规律,教师以多媒体为教学平台,通过精心设计问题和有效的激励机制充分调动学生的学习积极性,达到事半功倍的教学效果。而学生也在老师的鼓励引导下,小结方法,通过小组讨论等方式体会知识的应用和数学思考的方法增强学习的成就感和自信心,培养学生的探索精神和探究能力。
三、教学程序设计
教学过程
设计思路和各环节分析
(一) 展示教材第110页例题3,以回顾作为引入:
例3:如图 点D在⊿ABC的边AC上,已知∠A=100°,∠ABC=60°∠ABD=40°。试指出图中相等的线段并说明理由。
提问:本题的⊿ABC是一个一般三角形,BD将此三角形分割成了两个等腰三角形,若将题目改为“已知⊿ABC中∠A=100°,∠ABC=60°”你能画直线,将此三角形分割成两个等腰三角形吗?
提示:
(1)能否过两个顶点画直线(否定)
(2)不过任何顶点画直线?(过两边则
2、是不是所有的三角形都可以分成两个等腰三角形?如果不是,则要满足什么条件?
(二) 探索交流,获得新知
如图,△ADC 是等腰三角形,延长AD到B,如果假定△BCD也是等腰三角形,则有以下三种情况,即:
(1)BD=DC ;
(2)CD=BC ;
(3)BD=BC.
下面分别加以讨论.
(1) 如果BD=DC,则有∠B=∠BCD .
又因为AD=DC ,所以∠A=∠ACD .
所以∠A+∠B+∠ACB =180°
所以 2∠ACB =180°,∠ACB =90°.
所以 这个三角形必定是直角三角形.即直角三角形一定可以被分割成两个等腰三角形。
(2)如果CD=BC,设∠A =α,如图因为 AD=DC,所以∠ACD =α,∠BDC=∠A+∠ACD=2α,而因为CD=BC,所以∠B =∠BDC = 2α,所以 ∠B =2∠A.
所以 这个三角形必定有一个角是另一个的2倍.
(3)如果BD=BC,设∠A =α,如图 同上推得∠BDC=2α.
因为 BD=BC,所以∠BCD =∠BDC=2α,
所以∠ACB=∠ACD+∠DCB=α+2α=3α,即∠AC B= 3∠A.
所以 这个三角形必定有一个角是另一个的3倍.
结论二:一个任意三角形具备下列三个条件之一就可以被分割成两个等腰三角形.:
① 一个角是90°,
② 一个角是另一个角的2倍,
③ 一个角是另一个角的3倍,
三.尝试实践
给定一张等腰三角形纸片,剪一刀后,被分成两个等腰三角形纸片,这个原等腰三角形的每个内角角是几度?把所有符合要求的等腰三角形尽可能的列举出来。
分析:分类(1)顶角比底角大时,经过等腰三角形顶角的。顶点画直线(保留最小角原则)
1. BD=AD=DC时又AB=AC。
∴∠BAC = 90°
∠ABC =∠ACB=45°
2 .(一个角是另一个角的3倍) BD=AD ,DC=AC, 且AB=AC。
∴∠BAC = 108°
∠ABC=∠ACB=36°
(2)当底角比顶角大时,经过底角顶点画直线
3 .(一个角是另一个角的2倍),BC=BE且BE=AE,AB=AC。
∴∠BAC = 36°∠ABC=∠ACB=72°
4 .(一个角是另一个角的 3倍),BC=CE且BE=AE,AB=AC。
∴∠BAC =
∠ABC=∠ACB=
四、 小结:
1.进一步探究把一个一般的三角形分成两个等腰三角形的条件和思路.满足其中三个条件之一的三角形才可以被分成两个等腰三角形.
2.利用一般三角形所具有的条件解决特殊三角形的问题.
五、作业
试一试
1、已知⊿ABC中∠A=120°,∠ABC=40°试用一条直线将此三角形分割成两个等腰三角形。
2、 将一个等边三角形分割成四个等腰三角形(画出分割线,标上必要的符号)
引入课题,是许多同仁热衷研究的内容,我认为,与其生搬硬套不如开门见山,利用学生已有的记忆,运用曾经出现过的例题3,以考核学生的记忆力和快速的反应能力,激发学生快速进入角色,兴致盎然,本题的计算也基本上复习了本课需要的几个重要定理的同时也通过此题的结论给学生一个直观的分割三角形的形象,变式引出后面的内容。
此处主要解决怎么画的问题,也为后面解决求等腰三角形各个内角度数时解决怎么画的打下伏笔。
本题以老师引导到为主。由共同探讨,一可以减少时间,二可以降低难度,也为后面学生的自主探讨积累经验,得出结论并掌握。
自然转折,符合常理。由问题2将本节课盲目尝试分割等腰三角形转化为有选择的判断怎样的三角形可以分割成两个等腰三角形,在有目的的进行分割,从而过渡到第二部分教学。
数形结合,利用图形找到三角形内角之间的关系。得出第一类三角形形状是直角三角形,有时间的话,这个结论可以放课后讨论验证它的正确性。
有了第一种探究,第二第三种探究结论就可以让学生与老师互动合作探究,很快得出结论,学生因为有了经验,自然就有了兴趣,更为后面等腰三角形分割,积累了第二个必不可少的经验。
最后得出的结论,可以帮助学生初步判断具备什么条件的三角形可以分割成两个等腰三角形,然后由一般到特殊,体现思路的一般规律,也顺利的引出后面的实践内容。
小组合作,让接受能力强的学生带动学能相对薄弱的同学,共同完成,共同进步。
一般三角形画线,得到的是角和角之间的关系,加上新的条件,就可以具体计算角的度数,因此此处的难点就比较顺当的解决了。分割等腰三角形成两个等腰三角形,可以综合使用并验证之前得到的两个结论,加强了学生解决问题的能力,使学生更深刻的掌握知识。
此处发现了教学参考上一个错误:BE=EC是不对的。
及时小结,使学生及时反思,互相提醒,让更多的学生最大程度记住本课的知识要点。
这两个作业,分别有两种、四种分割结果,可以让不同层次的学生体验,发挥主观能动性。
六、板书
课题:怎样的三角形可以被分割成等腰三角形?
结论一:分割原则:
过三角形一个顶点画直线,保留最小角
结论二:一个任意三角形具备下列三个条件之一就
可以被分割成两个等腰三角形:
① 一个角是90°,
② 一个角是另一个角的2倍,
③ 一个角是另一个角的3倍,
七、反思补充
新的课程标准要求教师根据自己的学生合理选择教学素材、安排教学内容,作为老师,既要尊重教材,又要挖掘教材,加入了本课一般三角形满足什么条件可以被分割成等腰三角形的一般规律,以找出一些课本之外的共性的东西,提高学生的好奇心和学习的积极性。
在学习合作的教、学过程中,我注重及时的肯定学生的点点创新和智慧的火花,例如“探索交流,获得新知”中,当一个三角形是等腰三角形确定之后,另一个三角形是等腰三角形,边与边之间的相等有三种情况,只要有学生提出,就大力赞赏以此作为激励学生,注重学习过程的评价,让学生在学习中感悟、体验数学课堂的神奇。
本人愚见,若有不当之处欢迎各位专家评委批评指正,谢谢!
《等腰三角形》教学反思 篇4:
学习目标
1.知识与能力
了解等腰三角形的有关概念,探索并掌握等腰三角形的性质;能够用等腰三角形的知识解决相应的数学问题。
2.过程与方法
通过对性质的探究活动和例题的分析,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力。
3.情感、态度与价值观
通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
学习重点
等腰三角形的性质的探索及应用。
学习难点
等腰三角形三线合一的性质的理解、证明及其应用。
学习过程
一、创设情境
1.出示人字型屋顶的图片(55页),提问:屋顶被设计成了哪种几何图形?
2.小学我们已经初步认识了等腰三角形,这节课我们来具体研究等腰三角形的性质。
二、操作探究
1.动手操作
把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC有什么特征?
学生课前动手操作,剪出图形,课上从剪出的图形观察△ABC的特点,可以发现AB=AC。
学生总结出等腰三角形的概念:有两边相等的三角形叫作等腰三角形,相等的两边叫作腰,另一边叫作底边,两腰的夹角叫作顶角,底边和腰的夹角叫作底角。
找出手中图形的腰、底边、顶角、底角(△ABC中,若AB=AC,则△ABC是等腰三角形,AB、AC是腰、BC是底边、∠A是顶角,∠B和∠C是底角。)
2.探究问题
(1)刚才剪出的等腰三角形ABC是轴对称图形吗?它的对称轴是什么?
学生思考、回顾剪纸过程,动手把等腰三角形ABC沿折痕对折,容易回答出⊿ABC是轴对称图形,折痕AD所在的直线是它的对称轴
(2)把剪出的△ABC沿折痕AD对折,找出其中重合的线段和角,填入下表:
重合的线段重合的角
(3)从上表中你能发现等腰三角形具有什么性质吗?说一说你的猜想。
学生经过观察,独立完成上表,然后小组讨论交流,从表中总结等腰三角形的性质。
引导学生归纳:
性质1等腰三角形的两个底角相等(简写成“等边对等角”);
性质2等腰三角形顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)
性质3等腰三角形是轴对称图形,对称轴为顶角角平分线(或底边上的高,或底边上的中线)所在直线。
三、合作交流
1.性质的证明思路
通过上面折叠的过程的启发,你能利用三角形的全等来证明这些性质吗?
学生:我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。小组交流,展示证明思路。
(1)性质1(等腰三角形的两个底角相等)的条件和结论分别是什么?用数学符号如何表达条件和结论?如何证明?
教师引导学生根据猜想的结论画出相应的图形,写出已知和求证,师生共同分析证明思路,强调以下两点:
①利用三角形的全等来证明两角相等,为证∠B=∠C,需证明以∠B、∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形。
②添加辅助线的方法有很多种,常见的有作顶角∠BAC的平分线,或作底边BC上的中线,或作底边BC上的高等,让学生选择一种辅助线并完成证明过程。
(2)回顾性质1的证明方法,你能用这种方法证明性质2(等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合)吗?
让学生模仿证明性质2,并鼓励学生用多种方法证明。
问题:如图,已知△ABC中,AB=AC。
(1)求证:∠B=∠C;
(2)AD平分∠A,AD⊥BC。
学生在独立思考的基础上进行讨论,寻找解决问题的办法,若证∠B=∠C,根据全等三角形的知识可以知道,只需要证明这两个角所在的三角形全等即可,于是可以作辅助线构造两个三角形,做BC边上的'中线AD,证明△ABD和△ACD全等即可,根据条件利用“边边边”可以证明。
2.证明过程
让学生充分讨论,交流,展示后书写证明过程
证明:方法一作底边BC的中线AD
在△ABD和△ACD中
所以△ABD≌△ACD(SSS),所以∠B=∠C,∠BAD=∠CAD,∠ADB=∠ADC=90°。
3.几何符号语言表述
如图,在△ABC中
性质1:∵AB=AC,∴=。
性质2:
1∵AB=AC,∠BAD=∠CAD∴BD=,⊥。
2∵AB=AC,BD=CD∴∠BAD=,⊥。
3∵AB=AC,AD⊥BC∴∠BAD=,BD=。
4.典例分析
△ABC中,AC=BC,CD是∠ACB的平分线,AD=4cm,∠B=30°,求AB的长及∠BCD的度数。
四、课堂小结
每个小组说说自己的收获
1.等腰三角形的定义及相关概念。
2.等腰三角形的性质。
五、达标检测
1.等腰三角形顶角为1500,那么它的另外两个角的度数分别是。
2.等腰三角形的一个内角为500,则另外两个角的度数分别是。
3.在等腰△ABC中,若AB=3,AC=7,则△ABC的周长为。
4.如图,在△ABC中,AB=AC,∠1=∠2,BD=BE,且∠A=1000,则∠DEC=。
《等腰三角形》教学反思 篇5:
教材分析
《等腰三角形》是山东教育出版社义务教育课程实验教科书八年级数学上册第一章。等腰三角形是在学生学习了三角形的有关知识、掌握了全等三角形的判定及性质与轴对称的性质的基础上进行的。它不仅是对前面所学知识的综合应用,也是后面研究等边三角形等内容的预备知识,同时也是今后证明角相等、线段相等及两直线垂直的重用依据。
学情分析
学生在前面已接触过轴对称和全等三角形的有关知识,所以等腰三角形的这两个性质学生可以通过折叠发现,并用全等三角形的性质加以证明而通过探究等腰三角形的“三线合一”的性质,可以激发学生浓厚的学习数学的兴趣,使学生体会性质定理的来龙去脉;了解、感知知识发生、发展的全过程;拓宽学生探索图形变化的视野。掌握等腰三角形及其性质在生活中的应用,更有益于学生了解数学价值,体会数学来源于生活,并应用于生活。
本节课主要通过小组合作、交流解决疑难问题,并在教师设疑与学生设疑、教师引导与学生讲解、教师评价与学生评价相结合中实施差异合作教学。
背景介绍
新课程中等腰三角形的性质不是通过论证得出的,而是让学生动手操作,通过等腰三角形的轴对称变换得出的。在上“轴对称的认识”一节时,我引导学生采用折纸的方法,较为成功地得出了线段的中垂线、角平分线的性质。我考虑本节内容也能否让学生通过折纸的方法,实验、探索、归纳得出相关的结论呢?于是我进行了大胆地尝试。
教学目标
(一)知识目标
学优生通过启发引导探究出几何推理的方法得到等腰三角形的性质;中等生、学困生通过动手操作验证等腰三角形的性质。在复杂图形中正确运用“三线合一”的方法应予以指导,安排分层次的习题,以适应不同学生的需要。
(二)能力目标
发展学生的思考能力、语言表达能力和推理问题的能力,深化逆向思维能力和综合应用问题能力。
(三)情感目标
培养学生自信心、合作能力、竞争意识以及勇于探索的精神。
课堂教学活动过程:
1、创设情境,引出课题
活动一:多媒体展示图片
学生活动:学生欣赏图片,感受生活中等腰三角形的数学美。
目的:通过图片的展示,让学生感受到生活中处处都有等腰三角形,体会数学来源于生活,激发学生探究的积极性,并由此引入课题。
2、实验操作,探究规律
活动二:操作体验
师:什么叫等腰三角形?知道等腰三角形你能得到什么结论?
生:两条边相等的三角形是等腰三角形。等腰三角形的两个底角相等。
师:等腰三角形还有别的特点吗?请同学们通过动手折叠等腰三角形(纸片)进行探究。
学生动手操作,同桌交流实验结果。
师:说说你的发现。并向大家展示一下,你是怎样发现这个结论的?
自评:此时学优生和中等生能够发现结论,而学困生能折出来,但不能用语言阐述,所以老师只能让学优生和中等生回答。通过动手,加深学生对知识形成过程的理解,发展学生的思维能力、动手操作能力和数学语言表达能力。让不同层次的学生进行回答,激发学生的求知欲,培养学生的探索意识和创新精神。
师:折痕是等腰三角形中的什么线段?
生:顶角的角平分线。(有的答底边上的高或底边上的高。)
师:是不是想告诉我们等腰三角形顶角的平分线也是底边上的中线和高线?
生:是。
师:还想告诉我们什么?
生:等腰三角形底边上的中线也是顶角的平分线和底边上的高线。
师:非常聪明。还想告诉我们什么?
生:等腰三角形底边上的高线也是顶角的平分线和底边上的中线。
师:那就是说等腰三角形的“三线合一”实际上有几层意义?
生:三层。
师板书性质定理的内容。
师:你能用几何推理的方法证得等腰三角形“三线合一”这一性质定理吗?(师把图和已知、求证写在黑板上)
自评:加强知识形成过程的教学,不断完善知识体系,教给学生分析问题的方法。让学优生通过启发引导探究出几何推理的方法得到“三线合一”,中等生、学困生通过动手操作验证“三线合一”即可。
师:在等腰三角形中,如果出现这“三线”中的“一线”时,同学们会联想到什么?
生:另外“两线”。
师:这三层意义能不能分别用符号语言表示?
自评:优等生能够表述几何语言,中等生和学困生就有困难,他们只能是从动手操作的过程中形象地认知,并不能上升到理论的高度来总结。
师板演:
①∵AB=AC,BD=CD
∴∠BAD=∠CAD,AD⊥BC
②∵AB=AC,AD⊥BC
∴∠BAD=∠CAD,BD=CD
③∵AB=AC,∠BAD=∠CAD
∴BD=CD,AD⊥BC
师:这三段推理有什么共同的特点?
生:有一个条件推出其余的两个条件。
师:是有一个条件推出的吗?
生:再加上等腰三角形这个条件。
师:非常好。等腰三角形“三线合一”是说明两个角相等、两条线段相等或垂直的重要依据。以后我们就可以用“三线合一”的三段推理去证明或解决其它的问题。
自评:对于定理的学习,学生要从理解到会应用是有一个过程的,等腰三角形的“三线合一”这一定理的学习难点就是怎样去应用。我把教材这样处理,不但要使全体学生透彻的理解了这一定理,更让学优生知道这一定理的几何推理过程,为这一定理的应用打下了基础。设计好了这一思路后,我采用互动式教学法,通过师生对话和学生的操作和思考,使学生掌握等腰三角形的“三线合一”性质,从而发展其空间观念,并为定理的应用打下了坚实的基础。
3、应用新知,尝试成功
尝试练习一:
(1)如果等腰三角形的一个底角为50°,则其余两个角为
(2)如果等腰三角形的顶角为80°,则它的一个底角为
(3)如果等腰三角形的一个外角为70°,则它的三个内角为
(4)如果等腰三角形的一个外角为100°,则它的三个内角为
意图:通过本练习,巩固理角等腰三角形“等边对等角”的性质和等边三角形的性质;特别通过练习(4)设计,得出不同的结果,培养学生思维的开放性与灵活性。
尝试练习二:
如图,房梁上放一把三角尺(等腰直角三角形),从顶点A挂一条铅垂线,使线经过三角尺斜边的中点O。这根房梁是否保持水平呢?为什么?
意图:此例与引入课题时提出的问题模型呼应,体现了数学来源于实践,反过来又作用于实践的辩证唯物主义的观点。培养学生学数学,用数学的意识。
4、课堂小结,掌握方法
(1)小结本堂课的收获。(学生畅所欲言)
(2)掌握方法:等腰三角形的性质提供了说明两角相等的常用方法;“三线合一”是说明两条线段相等、两个相等及两条直线互相垂直的依据。
5、布置作业,课外拓展
(略)
设计体会:
在数学活动中如何真正让每一位学生积极行动起来,能提出自己的方法和建议,成为数学活动中的一分子,培养学生相对独立地获取知识和能力,逐步学会运用分析、类比、转化等方法。本课例中围绕一个“折”字较为成功地体现了这一点。
在新授课的差异教学中,我认为最重要的是课堂环节的安排和问题的设置。有效的课堂提问必须清楚、明确、具有启发性,要考虑到不同层次的学生的心理特点、认知特点,适应学生的认识水平。通过分层测试使学生掌握等腰三角形的性质,并能初步运用。满足不同学生的需求,促进全体学生健康发展。帮助学生反思学习过程,使学生树立成功者的自信。
《等腰三角形》教学反思 篇6:
一、说教材
《等腰三角形的性质》是人教版教科书八年级上册第13章第三节第1课时的教学内容。在此之前,学生们已经学习了等腰三角形的定义以及轴对称,学生已经具备了一定的动手操作能力。这些知识为本节课的学习等腰三角形的性质起到了铺垫的作用。而本节课的知识为以后将为以后学习的四边形及多边形的相关知识奠定了基础。
二、说教学目标
根据教学大纲和新课程标准的要求,我认真钻研教材,特制定以下三个教学目标:
1、掌握等腰三角形的性质
2、知道等腰三角形的性质的推理过程
3、会灵活运用等腰三角形的性质解决相关的数学问题
三、说教学重、难点
结合八年级学生的年龄特点、心理特征和现有的知识结构。我认为本节课的重点是等腰三角形的两个性质即“等边对等角”;“三线合一”。
由于八年级学生的逻辑推理能力和理解运用能力还较弱,因此等腰三角形的性质的推理过程及会灵活运用等腰三角形的性质解决相关的数学问题是本节课的难点。
四、说教法和学法
本节课我采用的教法是启发式教学法、动手操作法。
学生的学法是:自主探究法、合作讨论法。
五、说教学过程
本节课我主要是根据“四步五环节”教学法从以下五个环节进行教学的。
1、复习导入
通过教师在黑板上画一个三角形(任意取一个点为圆心,适当的长为半径画弧,在所画的弧上任意取两个点顺次连接这三个点所得的。三角形是什么三角形?)的方法能确定是所画的三角形是等腰三角形。这样导入可以让学生知道如何用尺规作图做一个等腰三角形,并引导他们回忆等腰三角形的概念及腰、底边、顶角、底角的概念。
2、探究新知
在同学们已经学习了轴对称的基础上通过对折剪纸观察猜想得出等腰三角形的性质,这样设计既能提高学生的动手操作能了,又能更直观的发现等腰三角形的三条性质即:对称性、等边对等角、三线合一。在此基础上教师在引导学生写出推理过程,同时也提高了学生的逻辑思维能力。
3、理解与运用
为了让学生熟练的掌握等腰三角形的三个性质,我设计了一道相关证明题,让学生先自主探究不会的同学请教会做的给其讲解进行兵练兵,再找一名学生将解题过程板术黑板上,教师进行点评,以提高学生书写完整、简洁的解题过程的能力。
4、强化巩固
在这一教学环节中我设计了2道求角度的问题,让学生通过由易到难的探究过程将所学的知识进一步升华,培养学生的探究精神。
5、小结
设计三个问题让学生通过思考讨论回答出来,从而把本节课的知识系统化。以提高学生的总结概括能力。
本节课我采用观察法和动手操作法导入新课充分的调动了学生学习的主动性和积极性顺利完成的预定的教学任务,取得了良好的教学效果。
初中数学等腰三角形的性质教案 篇7:
教学目标:
知识技能
了解等腰三角形的性质,掌握等腰三角形的性质定理及推论,会用定理及推论解决简单问题。
数学思考
培养学生探究思维、逻辑思维能力,探索引辅助线的规律。
情感态度与价值观:
渗透"实践--理论--实践"的辩证唯物主义思想,培养探究分析数学知识方法的兴趣,养成踏实细致、严谨科学的学习习惯。
教学重点与难点
重点:理解等腰三角形的性质定理、推论,并能用它们解决简单的问题。
难点:引辅助线证明定理和推论1的应用。
教学过程与流程设计
引导性材料:
1. 学生把等腰三角形的两腰叠在一起,发现它的两个底角重合,这说明等腰三角形具有什么性质?(等腰三角形的两个底角相等)(演示叠合过程)
2. 教师用等腰三角形纸片演示两腰叠合,再把纸片展开。
提问:你能发现等腰三角形还有什么特性吗?
(引入课题,明确目标)(显示教学目标)
教学设计:
问题1:怎样来证明“等腰三角形的两个底角相等”呢?
已知:如图,△abc中,ab=ac.
求证:∠b=∠c.
(方法1)证明:作顶角的平分线ad.
在△bad和△cad中。
ab=ac (已知)
∠1=∠2 (辅助线作法)
ad=ad (公共边)
∴△bad≌△cad(sas)
∴∠b=∠c(全等三角形的对应角相等)
问题2:上述命题还有哪些证法?
方法2:作底边bc上的高ad. (证明过程由学生口述)
方法3:作底边bc上的中线ad.(证明过程由学生口述)
(演示):等腰三角形的性质定理 等腰三角形的两个底角相等
(简写成“等边对等角”)
观察上述三种方法,思考如下问题:
(1) 在等腰△abc中,如果ad是顶角的平分线,那么ad是否平分底边?是否垂直于底边?
(2) 在等腰△abc中,如果ad是底边上的高,那么ad是否平分顶角?是否平分底边?
(3) 在等腰△abc中,如果ad是底边上的中线,那么ad是否平分顶角?是否垂直于底边?
推论1 等腰三角形顶角的平分线平分底边并且垂直于底边。
(等腰三角形的顶角平分线、底边上中线、底边上的高互相重合。)
练习:填空,在△abc中,
(1) ∵ab=ac,ad⊥bc,
∴∠ =∠ , = .
(2) ∵ab=ac,ad是中线,
∴ ⊥ ,∠ =∠ .
(3) ∵ab=ac,ad是角平分线,
∴ ⊥ , = .
问题2:等边三角形是特殊的等腰三角形,除具有等腰三角形的性质外,还有特殊的性质吗?
推论2:等边三角形的各角都相等,并且每一个角都等于60°.(学生完成证明)
已知:如图,△abc中,ab=ac=bc.
求证:∠a=∠b=∠c=60°
证明:∵ ab=ac,
∴∠b=∠c(等边对等角),
∵ac=bc,
∴∠a=∠b(等边对等角),
∴∠a=∠b=∠c,
∵∠a+∠b+∠c=180°(三角形内角和定理),
∴∠a=∠b=∠c=60°
例题解析:
例1:填空,1.在△abc中,ab=ac.
(1) 若∠a=50°,则∠b= °,∠c= °;
(2) 若∠b=45°,则∠a= °,∠c= °;
(3) 若∠b=∠a,则∠a= °,∠c= °;
(4) 若∠b=2∠a,则∠a= °,∠c= °.
2.等腰三角形的一个角是40°,则它的底角是 .
3.等腰三角形的一个角是120°,则它的底角是 .
例2:已知,如图(6),房顶的顶角∠bac=100°,过屋顶a的立柱ad⊥bc,屋椽ab=ac,求顶架上∠b、∠c、∠bad、∠cad的度数。
解:在△abc中,
∵ab=ac(已知),
∴∠b=∠c (等底对等角),
∴∠b=∠c=(180°-∠bac)=40°,
(三角形内角和定理),
又∵ad⊥bc(已知),
∴∠bad=∠cad(等腰三角形顶角的平分线与底边上的高互相重合),
∵∠bac=100°,
(7) ∴
课堂练习:
已知:如图(7)中的三角形测平架中,ab=ac,在bc的中点挂一个重锤,自然下垂,调整架身,使点恰好在重锤线上。
求证:(1)ad⊥bc;
(2)这时bc处于水平位置,为什么?
课堂小结:
1. 等腰三角形的性质定理:“等边对等角”,揭示了同一个三角形中边与角之间的关系;
2. 等腰三角形性质定理的推论1、推论2;
3. 由推论1知,等腰三角形“底边上的三条主要线段互相重合”,这条线段具有三种不同的“身份”,因此,它是推证两条线段相等、角相等以及两条直线互相垂直必须关注的“热线”。
4. 掌握证明几何命题的完整过程,以及不同辅助线的添法,从中体验数学知识的美妙。
作业:习题 第6、7题(作业本),其他课本
《等腰三角形》教学反思 篇8:
教学目标
(一)教学知识点
探索等腰三角形的判定定理。
(二)能力训练要求
通过探索等腰三角形的判定定理 及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;
(三)情感与价值观要求
通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解。从而培养学生利用已有知识解决实际问题的能力。
教学重点
等腰三角形的判定定理的探索和应用。
教学难点
等腰三角形的判定与性质的区别。
教具准备
作图工具和多媒体课件。
教学方法
引以学生为主体的讨论探索法;
教学过程
Ⅰ.提出问题,创设情境
1.等腰三角形性质是什么?
性质1 等腰三角形的两底角相等。(等边对等角)
性质2等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。
(等腰三角形三线合一)
2、提问:性质1的逆命题是什么?
如果一个三角形有两个角相等, 那么这个三角形是等腰三角形。 这个命题正确吗?下面我们来探究: Ⅱ.导入新课
大胆猜想:
如果一个三角形有两个角相等,那么这两个角所对的边也相等。(简称“等角对等边”). 由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法。
[例1]已知:在△ABC中,∠B=∠C(如图).
求证:AB=AC. 教师可引导学生分析:
BA12DC联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形。因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起。再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC. (学生板演证明过程)
证明:作∠BAC的平分线AD. 在△BAD和△CAD中
??1??2,? ??B??C,
?AD?AD,? ∴△BAD≌△CAD(AAS).
∴AB=AC.
提问:你还有不同的证明方法吗?(由学生口述证明过程)
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).
符号语言:在△ABC中 ∵ ∠B=∠C ∴ AB=AC (等角对等边)
4、等腰三角形的性质与判定有区别吗? 性质是:等边 等角 判定是:等角 等边
小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理。
下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用。
(演示课件)
[例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。
这个题是文字叙述的证明题,?我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的几何图形。
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图).
求证:AB=AC.
同学们先思考,再分析。(由学生完成)
要证明AB=AC,可先证明∠B=∠C.
接下来,可以找∠B、∠C与∠
1、∠2的关系。
(演示课件,括号内部分由学生来填)
证明:∵AD∥BC,
∴∠1=∠B(两直线平行,同位角相等),
∠2=∠C(两直线平行,内错角相等).
又∵∠1=∠2,
∴∠B=∠C,
∴AB=AC(等角对等边).
看大屏幕,同学们试着完成这个题。
(课件演示)
已知:如图,AD∥BC,BD平分∠ABC.
求证:AB=AD.
(投影仪演示学生证明过程)
证明:∵AD∥BC,
∴∠ADB=∠DBC(两直线平行,内错角相等).
又∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD(等角对等边).
下面来看另一个例题。
(演示课件)
? 例
2、已知等腰三角形的底边等于a,底边上的高等于b,你能用尺规作图的方法作出
EA12DBCADBCM A
这个等腰三角形吗? a
b
作法:(1)作线段BC,使BC=a;
(2)作BC的垂直平分线MN,交BC于D; (3)在MN上截取DA=h,得A点;
(4)连结AB、AC,则△ABC即为所求等腰三角形。
例
3、思考:在△ABC中,已知,BO平分∠ABC,CO平分∠ACB.过点O作直线EF//BC交AB于E,交AC于F.(1)请问图中有多少个等腰三角形?说明理由。(2)线段EF和线段EB,FC之间有没有关系?若有是什么关系?
Ⅲ.随堂练习
(一)课本P79
1、
2、
3、4.
Ⅳ.课时小结
1、等腰三角形的判定方法有下列几种: ①定义,②判定定理。
2、等腰三角形的判定定理与性质定理的区别是:条件和结论刚好相反。
3、运用等腰三角形的判定定理时,应注意 在同一个三角形中。 Ⅴ.作业布置:
学力水平:必做42页 1------7题
选做 42页 8-----10题
等腰三角形说课稿 篇9:
本节课主要是让学生了解等腰三角形的概念,掌握等腰三角形的性质,以及运用等腰三角形的概念及性质解决相关问题。在教学方面,主要按以下步骤进行教学,教学效果比较好。
一、教学建议
1、课前先复习等腰三角形的概念,等腰三角形各部分的名称。这样做对后面学习等腰三角形性质的时候,才能使学生非常容易的知道哪个角是底角,哪个角是顶角,哪条边是底边,能使教师的教学做到事半功倍的效果。
2、在学习等腰三角形的性质的时候,一定要使学生自己剪出等腰三角形,自己来折贴,通过分组讨论,从而得出等腰三角形的2条性质。这样做培养了学生的动手能力,团结合作的能力,以及探究的能力,动口的能力。这样的课堂比单纯教师说出来的效果要好很多,也使学生对等腰三角形性质的掌握更深刻得多。另外,在得出等腰三角形的2条性质以后,还要问学生怎样用数学语言来表示,这样才能使学生在做题时,书写格式更流畅。
3、在做练习时,对比较简单的题目,就让学生先做,然后老师点评;对比较难的题目,教师和学生先一起来分析解题思路,再让学生做,或者先让学生讨论,再让学生上来板书,然后教师点评。这样做的目的,是把学习的主动权还给学生,激发学生学习的积极性和创造性,从而使数学课堂充满活力。
二、教学反思
1、充分利用教材,在练习题与例题的编排上打破常规,让学生学生自己来折贴剪出等腰三角形,通过质疑—猜想—类比—探索—归纳—总结出等腰三角形的2条性质,再让学生用等腰三角形的2条性质来解决不同类型的题目,适时地参透了类比的数学思想,并深刻地体现了新教材的课改理念。
2、在授课过程中,教师给学生留下了很大的思维空间,通过自己的亲自操作,运用探索发现法,让学生积极参与自主探究,合作交流,把主体地位返还给学生。无论是等腰三角形性质的推导,还是等腰三角形性质的应用,都是在教师的引导下,学生自己完成的,教师这样做,重视了知识的形成过程,在应用中又开拓了学生的视野,使学生的发散思维与应用技巧得到了锻炼。
等腰三角形 篇10:
一、教学目标
1.知识与技能
(1)理解公理,能够举一反三,证明等腰三角形的性质定理;
(2)能够通过全等三角形的判定定理证明等腰三角形的定理,进一步感受证明过程;
(3)熟悉证明的基本步骤和书写格式
2.过程与方法
2.通过诱导、启发学生利用全等三角形证明等腰三角形的定理,发展学生的初步演绎逻辑推理的能力,鼓励学生在交流探索中发现证明的多样性,提高逻辑思维水平。
3.情感态度及价值观
使学生渗透数学思想,培养学生合作交流的意识,同时使学生通过独立思考去考虑问题的能力加强,培养良好的学习习惯。
二、教学重点、难点
重点:探索证明等腰三角形的性质定理的思路与方法,掌握证明的基本要求和方法。
难点:通过探索利用全等三角形的判定与定义证明等腰三角形的性质定理,明确推理证明的基本要求。
三、教具准备
(两个等腰三角形、彩色粉笔、教案、尺子)
四、教学过程
1.复习旧知,引入新知
(1)请同学们回忆判定三角形全等的公理有哪些?
公理:三边对应相等的两个三角形全等(SSS)
公理:两边及其夹角对应相等的两个三角形全等(SAS)
公理:两角及其夹边对应相等的两个三角形全等(ASA)
(2)推论呢?
两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS)
(3)根据全等三角形的定义,我们可以得到定理:全等三角形的对应边相等、对应角相等
学生讨论:等腰三角形有哪些性质吗?根据等腰三角形的性质给予证明。
设计意图:为学生对本节课证明等腰三角形的定理作铺垫
2.新授课
猜想:如果一个三角形是等腰三角形,那么这个三角形的两个底角有什么关系呢?如何证明呢?
(1)画出图形;
(2)根据图形写出已知求证;
(3)写出推理过程
已知:如图1-1,在△ABC中,AB=AC,求证:∠B=∠C
分析:(折叠法)要证明两底角相等,将等腰三角形对折,折痕将等腰三角形分成了两个全等三角形,可作一条辅助线(注意辅助线要画成虚线)
设计意图:锻炼学生的动手操作能力
证明:如图1-2,取BC的中点D,连接AD
(已知)AB、AC,在△BAD和△CAD中,BDxCD(已作),AD、AD(公共边),∴△BAD≌△CAD(SSS)
∴∠B=∠C(全等三角形的对应角相等)你还有其他证明方法吗?与同伴交流作出底边上的高或作出顶角的平分线,大家可以自己证明
3.巩固练习
在△ABC中,AB=AC
(1)若∠A=40°,则∠C等于多少度?
(2)若∠B=72°,则∠A等于多少度?
设计意图:加强学生对等腰三角形定理的认识
4.引出推论
在图1-2中,观察AD还具有怎样的性质?为什么?由此能得到什么结论?我们作出了底边上的中线,已证明△BAD≌△CAD
所以∠BAD=∠CAD(全等三角形对应角相等),即AD也是顶角的平分线,∠ADB=∠ADC(全等三角形对应角相等)。因为∠BDC=180°(平角的定义),所以∠ADB=90°,即AD也是底边上的高线
由此我们得到以下推论:等腰三角形顶角的角平分线、底边上的中线及底边上的高线互相重合(简称“三线合一”)
5.随堂练习
(1)如图1-3,在△ABC中,AB=AC,且AD⊥BC,已知BD=2cm,则DC=___cm,BC=___cm
(2)如图1-4,在△ABD中,AC⊥BD,垂足为C,AC=BC=BD
①求证:△ABD是等腰三角形,②求∠BAD的度数
图1-4
6.课堂小结
等腰三角形的性质定理:
等腰三角形的两个底角相等(简写成“等边对等角”)。等腰三角形顶角的平分线平分底边并且垂直于底边。
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,简称“三线合一”。
等腰三角形的教学设计 篇11:
教学目标
1、掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。
3、结合实例体会反证法的含义。
教学重点
等腰三角形的关性质定理和判定定理。
教学难点
能够用综合法证明等腰三角形的关性质定理和判定定理。
教学方法
教学后记
教学内容及过程
教师活动学生活动
一、等腰三角形性质的探究
1.让学生回忆上节课的教学内容,引导学生思考从等腰三角形中能找到哪些相等的线段。
2.播放课件,结合刚才的问题讲解例1的命题,并为后面将此性质拓展埋下伏笔。
3.分别演示:
∠ABC,∠ACE=∠ACB,k=,时,BD是否与CE相等。引导学生探究、猜测当k为其他整数时,BD与CE的关系。
4.引导学生探究,对于上述例题,当AD=AC,AE=AB,k=,时,通过对例题的引申,培养学生的发散思维,经历探究—猜测—证明的学习过程。
5.引导学生进一步推广,把上面3、4中的k取一般的自然数后,原结论是否仍然成立?要求学生说明理由或给出证明。
6.对学生探究的结果予以汇总、点评,鼓励学生在自己做题目的时候也要多思多想,并要求学生对猜测的结果给出证明。
7.提出新的问题,引导学生从“等角对等边”这个命题的反面思考问题,即思考它的逆命题是否成立。适时地引导学生思考可以用哪些方法证明?培养学生的推理能力。
8.归纳学生提出的各种证法,清楚的分析证明的思路,培养学生演绎证明的初步的推理能力。
9.启发学生思考:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,这个结论是否成立?如果成立,能否证明。这实际上是“等边对等角”的逆否命题,通过这样的表述可以提高学生的思维能力。
10.总结这一证明方法,叙述并阐释反证法的含义,让学生了解。
11.小结这两个课时的内容。
等腰三角形 篇12:
一、教材分析
本探究活动是继等腰三角形性质、判定之后探索能分割成两个等腰三角形的条件的内容。学习等腰三角形,离不开线段的相等和角相等,《分割等腰三角形》将加深同学们对等腰三角形地认识,是等腰三角形内容的延续和拓展。同时,将进一步丰富学生的数学活动经验,促进学生观察、分析、归纳、概括的能力
二、学生起点分析
七年级下学期的学生,从年龄特点看:他们好奇心强,思维活跃,喜欢动手操作,厌倦枯燥乏味的传统教学;从知识储备上看:他们已经掌握了三角形、等腰三角形有关知识,如三角形内角和、等腰三角形的性质、等腰三角形的判定等等;从技能水平上看:他们已经初步具有自主探索能力、合作交流能力。
三、教学目标及重难点
1、经历可以分割成两个等腰三角形的条件的探索过程,培养探索精神和合情推理能力;
2、在活动中,体会知识的运用和数学思考的方法;
3、通过探索条件的实践过程,体会数学推理的乐趣,增强合作交流意识。
[教学重点]:可以分割成两个等腰三角形的条件的探索过程。
[教学难点]:作等腰三角分割成两个等腰三角形的图形
四、教与学的方式
1、创设情境,激发兴趣。
2、小组活动,探求新知
3、梳理概括,形成结构
4、布置作业拓展延伸
授人以鱼,不如“授人以渔”整节课中我始终贯彻“自主参与,自主探究,合作交流,自主构建”的教育理念,采用“探,疑、研,悟”等环节主体探究。让学生在自主,合作,探究的浓厚氛围中掌握知识,形成技能,培养感情。充分体现科学性和人文性的统一。
五、教学流程设计
1、创设情境,激发兴趣。
情景一、学生阅读第120页的《阅读理解》
这样设计:可以让学生通过阅读理解,初步认识图形分割的意义,培养数学阅读的兴趣和方法。也为后面的如何分割做了复习。
情景二:在动听的音乐声中,大屏幕上循环播放生活中有关的等腰三角形的图片。图片最后出现等腰三角形花坛。
教师拿出一个等腰三角形和一把剪刀,提问:谁来帮老师分割这个三角形花坛,使它变成两个三角形以便可以种上不同的花?
这样设计:一是用他们熟悉或感兴趣的问题情境引出学习主题,激发了学生探究知识的欲望,能够较好地调动学生的学习兴趣。二是进一步体味数学就在我们身边,生活中处处都有数学。
学生上台演示。这时,教师可以引导学生有两种分割方法:一种是分割线经过顶角顶点;一种是分割线经过底角顶点。
这样设计:为后面的分类讨论思想打下铺垫
2、小组活动,探求新知
第一部分:教师追问:已知花坛的三个角分别为36°、72°、72°,你可以分割成两个等腰三角形吗?如果老师把三角形的三个内角改成20°、20°、140°,你还能分吗?
合作:小组合作设计两个三角形,使这两个三角形都可以被分割成两个等腰三角形。
学生展示图片,讲解分割思路。(教师反问:为何不从顶角的顶点分割?)
归纳小结:当顶角小于底角时,分割线经过底角的顶点,反之,顶角大于底角时,分割线经过顶角的顶点。
质疑:任何三角形都能被分割成两个等腰三角形吗?
这样设计:从特殊的三角形出发,加上学生对这个三角形比较熟悉,学生比较好操作,再到一般三角形,从而产生质疑:不是所有的等腰三角形都可以分成两个等腰三角形,起了承上启下的作用。
第二部分:探索能分割成两个等腰三角形的这个等腰三角形每个内角的关系?
学生动手画顶角分别是锐角、直角、钝角的等腰三角。
这样设计:让学生感知等腰三角形的。多样性,为分类讨论思想打下铺垫
设底角为X度,小组合作作图,并求出顶角的度数(X的代数式表示):第一、二组研究分割线经过顶角的顶点的情况,后两组研究分割线经过底角的顶点的情况。
这样设计:是让学生亲历科学发现的全过程,初步掌握研究性学习的学习方法。
通过作图求解,学生可以求出:顶角是底角的2倍、3倍、倍。对于倍,教师适当引导。
第三部分:探索能分割成两个等腰三角形的这个等腰三角形每个内角是几度?学生根据内角和180度,求出角度。
3、梳理概括,形成结构
知识:分割成两个等腰三角形的条件和方法;体验:探究活动中的感悟。教师适当引导补充,并对学生的表现适当评价,给予鼓励。
4、布置作业拓展延伸
分层作业:必做题:把一个角为36°的等腰三角形分成4个等腰三角形。
选做题:把角度分别20°、20°、140°等腰三角形分成三个等腰三角形。
这样设计:一是想以动手操作开始,再以动手操作结束,使课堂教学浑然一体;二是让学习从课上走到课下,让一种学法得以构建,让一种思想得以延续。
六、教学反思:
我努力给学生创造自主探索、合作交流的舞台,无论环节设计,还是作业的安排,都关注了学生的个体差异,注重了学生的数学体验。通过操作、观察、质疑、验证、深化等自主探索活动。丰富知识、提升能力、获得体验。使学生初步具有自主学习之法、终身学习之愿、快乐学习之情。
等腰三角形说课稿 篇13:
知识结构:
重点与难点分析:
本节内容的重点是定理。本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点。推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论。
本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反。学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点。另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法。由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用。
教法建议:
本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:
(1)参与探索发现,领略知识形成过程
学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言。最后找一名学生用文字口述定理的内容。这样很自然就得到了定理。这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。
(2)采用“类比”的学习方法,获取知识。
由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。
(3)总结,形成知识结构
为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形?
一。教学目标 :
1.使学生掌握定理及其推论;
2.掌握等腰三角形判定定理的运用;
3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;
4.通过自主学习的发展体验获取数学知识的感受;
5.通过知识的纵横迁移感受数学的辩证特征。
二。教学重点:定理
三。教学难点 :性质与判定的区别
四。教学用具:直尺,微机
五。教学方法:以学生为主体的讨论探索法
六。教学过程 :
1、新课背景知识复习
(1)请同学们说出互逆命题和互逆定理的概念
估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?
启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:
1.定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(简称“等角对等边”).
由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法。
已知:如图,△ABC中,∠B=∠C.
求证:AB=AC.
教师可引导学生分析:
联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形。因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起。再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.
注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆。
(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形。
(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系。
2.推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
要让学生自己推证这两条推论。
小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理。
证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.
3.应用举例
例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。
分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和。要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系。
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.
求证:AB=AC.
证明:(略)由学生板演即可。
补充例题:(投影展示)
1.已知:如图,AB=AD,∠B=∠D.
求证:CB=CD.
分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.
证明:连结BD,在 中, (已知)
(等边对等角)
(已知)
即
(等教对等边)
小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系。
2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.
分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论。
证明: DE//BC(已知)
,
BE=DE,同理DF=CF.
EF=DE-DF
EF=BE-CF
小结:
(1)等腰三角形判定定理及推论。
(2)等腰三角形和等边三角形的证法。
七。练习
教材 中1、2、3.
八。作业
教材 中 )、2)、3);2、3、4、5.
九。板书设计
等腰三角形的教学设计 篇14:
本节课《等腰三角形》中,性质的引入体现了新课程的理念,学生合作学习,课堂上,学生充分猜想、验证,用实验方法得出各种不同的结论,借助小组合作学习的方式,使学生的思维充分展开,在课堂上通过讨论,点评了两种方法,其余给学生课后验证,拓展了课堂的空间。从“折叠等腰三角形”这一实践中,通过“小组内交流→小组间交流→小组内归纳”这一过程,总结出等腰三角形的各种性质(现象),学生学习的兴趣增强了,对知识的探究也深入了,印象也比较深刻,明显比教师讲解有更强的作用。另一方面也说明了教师有深厚的学科功底,对教材的理解非常深刻,是在“用课本教”而不是在“教课本”。
在本节课中我还应处理好以下几点:
(1)等腰三角形“三线合一”定理的强调,尤其是书写。因为它需要两个条件,推出两个结论,学生第一次碰到,比较困难。
(2)加强证题前的分析,引导学生从已知条件出发,探究解题思路,此时可能有多种途径选择,最好结合所要求证的结论一起考虑,按需择取。
(3)加强学生的书写能力的培养。本节课学生书写板演基本没有,比较欠缺,可能学生能说不会写,或者写不好。
等腰三角形的教学设计 篇15:
本节课的重点是让学生在操作中发现等腰三角形和等边三角形的特征。我没有呈现几个不同类型的三角形,让学生通过测量边的长度从而发现他们的共同点,我在让学生观察常见的一副三角板,说说每个角的度数,然后再找出比较特殊的三角行,从而引出等腰三角形的。然后利用折纸这个活动,来进一步的体会等腰三角形的特点,先是引导学生看书上的图示,理解做的步骤,然后让学生自己动手去做,学生做得很好,接着我有让学生在探究本上试着画一个等腰三角形,使学生在画图的过程中进一理解特征。对于等边三角形的教学,基本上也就如此,但是,学生似乎不太理解折纸的方法,因此,我就作了示范,学生才勉强制作出了等边三角形。由于在这个部分,我留给学生的时间比较多,后来连书本上的“想想做做”都来不及解决,因此,我决定明天再增加一节练习课,做一个专项训练,看看学生对知识的综合运用情况。
今天教学了等腰三角形和等边三角形,其实学生通过动手操作对等腰三角形和等边三角形的概念还是很容易掌握的,关键在于灵活运用,所以,在练习的时候,我采取了一题多变的形式。在“想想做做”中有这样一道题目:一根18厘米长的线,可以围成边长几厘米的等边三角形?这个问题很简单,学生很轻易就解决了,然后我又把题目改成:用一根18厘米长的线围成一个等腰三角形,腰是7厘米,底是多少厘米?用一根18厘米长的线围成一个等腰三角形,底是4厘米,腰是多少厘米?通过这两个问题的练习,学生对等腰三角形的性质有了更深的理解,在做《补充习题》的时候正确率高了不少。所以,书上的练习题还有很多值得我们挖掘的地方。
等腰三角形 篇16:
课时安排4课时 从容说课 前面两节中,通过对生活中的轴对称现象的认识,进一步对轴对称的性质作了研究,还探讨了轴对称变换,能够作出一些简单的平面图形关于一条直线的对称图形,所以学生对这些结论已经有所了解。 本节在我们已学过的知识的基础上,进一步认识特殊的轴对称图形──等腰三角形,并探究等腰三角形的性质及等腰三角形的判定。在探究等腰三角形的相关问题时,再对等边三角形的相关内容进行深入探讨。 本节的重点是探索等腰三角形和等边三角形的性质及判定,并利用这些性质和判定求解相关的问题,进一步发展学生的数学思维。本节的重点同时也是本节的难点。教师在教学中,不可操之过急,应逐步引导,让学生去发现去探索这些性质,学生对它的理解要有一个过程,对它的应用也要慢慢去认识,并且在教学中要注意对学生数学思想的渗透以及分析问题、解决问题能力的培养。§ 等腰三角形(一)第七课时 教学目标 (一)教学知识点 1.等腰三角形的概念。 2.等腰三角形的性质。 3.等腰三角形的概念及性质的应用。
1.经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点。
2.探索并掌握等腰三角形的性质。 (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯。 教学重点 1.等腰三角形的概念及性质。 2.等腰三角形性质的应用。 教学难点 等腰三角形三线合一的性质的理解及其应用。 教学方法 探究归纳法。 教具准备 师:多媒体课件、投影仪; 生:硬纸、剪刀。 教学过程 ⅰ.提出问题,创设情境 [师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?
[生]有的三角形是轴对称图形,有的三角形不是。
[师]那什么样的三角形是轴对称图形?
[生]满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。
[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。
ⅱ.导入新课
[师]同学们通过自己的思考来做一个等腰三角形。
作一条直线l,在l上取点a,在l外取点b,作出点b关于直线l的对称点c,连结ab、bc、ca,则可得到一个等腰三角形。
[生乙]在甲同学的做法中,a点可以取直线l上的任意一点。
[师]对,按这种方法我们可以得到一系列的等腰三角形。现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本p138探究中的方法,剪出一个等腰三角形。
……
[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。
[师]有了上述概念,同学们来想一想。
(演示课件)
1.等腰三角形是轴对称图形吗?请找出它的对称轴。
2.等腰三角形的两底角有什么关系?
3.顶角的平分线所在的直线是等腰三角形的对称轴吗?
4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
[生甲]等腰三角形是轴对称图形。它的对称轴是顶角的平分线所在的直线。因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。
[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。
[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等。
[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线。
[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴。
[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴。
[师]你们说的是同一条直线吗?大家来动手折叠、观察。
[生齐声]它们是同一条直线。
[师]很好。现在同学们来归纳等腰三角形的性质。
[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。 [师]很好,大家看屏幕。(演示课件) 等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”). 2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程) [生甲]如右图,在△abc中,ab=ac,作底边bc的中线ad,因为
所以△bad≌△cad(sss). 所以∠b=∠c. [生乙]如右图,在△abc中,ab=ac,作顶角∠bac的角平分线ad,因为 所以△bad≌△cad. 所以bd=cd,∠bda=∠cda= ∠bdc=90°. [师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范。下面我们来看大屏幕。(演示课件)[例1]如图,在△abc中,ab=ac,点d在ac上,且bd=bc=ad,求:△abc各角的度数。 [师]同学们先思考一下,我们再来分析这个题。[生]根据等边对等角的性质,我们可以得到∠a=∠abd,∠abc=∠c=∠bdc,再由∠bdc=∠a+∠abd,就可得到∠abc=∠c=∠bdc=2∠a.再由三角形内角和为180°,就可求出△abc的三个内角。 [师]这位同学分析得很好,对我们以前学过的定理也很熟悉。如果我们在解的过程中把∠a设为x的话,那么∠abc、∠c都可以用x来表示,这样过程就更简捷。 (课件演示) [例]因为ab=ac,bd=bc=ad, 所以∠abc=∠c=∠bdc. ∠a=∠abd(等边对等角). 设∠a=x,则 ∠bdc=∠a+∠abd=2x, 从而∠abc=∠c=∠bdc=2x. 于是在△abc中,有 ∠a+∠abc+∠c=x+2x+2x=180°, 解得x=36°. 在△abc中,∠a=35°,∠abc=∠c=72°.[师]下面我们通过练习来巩固这节课所学的知识。 ⅲ.随堂练习 (一)课本p141练习 1、2、3. 练习
1. 如下图,在下列等腰三角形中,分别求出它们的底角的度数。 答案:(1)72° (2)30°2. 如右图,△abc是等腰直角三角形(ab=ac,∠bac=90°),ad是底边bc上的高,标出∠b、∠c、∠bad、∠dac的度数,图中有哪些相等线段? 答案:∠b=∠c=∠bad=∠dac=45°;ab=ac,bd=dc= 如右图,在△abc中,ab=ad=dc,∠bad=26°,求∠b和∠c的度数。 答:∠b=77°,∠c=°.(二)阅读课本p138~p140,然后小结。 ⅳ.课时小结 这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用。等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。 ⅴ.课后作业 (一)课本p147─1、3、4、8题。 (二)1.预习课本p141~p143. 2.预习提纲:等腰三角形的判定。 ⅵ.活动与探究
如右图,在△abc中,过c作∠bac的平分线ad的垂线,垂足为d,de∥ab交ac于e.求证:ae=ce. 过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,等腰三角形的性质。 结果: 证明:延长cd交ab的延长线于p,如右图,在△adp和△adc中 ∴△adp≌△adc.∴∠p=∠acd. 又∵de∥ap, ∴∠4=∠p. ∴∠4=∠acd. ∴de=ec. 同理可证:ae=de. ∴ae=ce. 板书设计 § 等腰三角形(一) 一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习 一、选择题 1.如果△abc是轴对称图形,则它的对称轴一定是( ) a.某一条边上的高; b.某一条边上的中线 c.平分一角和这个角对边的直线; d.某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) ° ° °和20° °或50° 答案: 二、已知等腰三角形的腰长比底边多2cm,并且它的周长为16cm. 求这个等腰三角形的边长。解:设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得 2(x+2)+x=16. 解得x=4. 所以,等腰三角形的三边长为4cm、6cm和6cm.
等腰三角形 篇17:
一、教材分析
1、教材的地位和作用:《等腰三角形的性质》是初中几何第二册第三章《三角形(二)》的第一课时,是全等三角形的续篇。等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。 2、教材重组:《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。
3、学习目标:根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:
知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。能力目标:能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习能力。
情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。
4、教学重、难点:
重点:等腰三角形性质的探索及其应用。
难点:等腰三角形性质的探索及证明。
5、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。
二、学情分析
刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。
三、教法分析
《数学课程标准》要求教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们进行自主探索和合作交流。为了顺利达到这一目标,引导学生探索性学习,唤起学生的创新意识,我根据教材特点和学生实际,采用了以观察法、发现法、实验操作法、探究法为主的教学方法进行教学。
四、学法建构
《数学新课程标准》指出自主探索与合作交流是学生的主要学习方式,因此,通过本节教学,我将对学生进行以下学法指导:
1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多种心智能力投入,使学生始终处于主动探索状态。
2、向学生渗透探究、发现的学习方法,培养他们在合作中共同探索新知识、解决新问题的能力。
五、教学模式
本节课设计的指导思想是全日制义务教育《数学课程标准》及新课程改革的教学理念。
《数学课程标准》提出了“问题情境——建立模型——解释、运用与拓展”的基本模式,在此模式指导下,本节课我将采用“创设情境——自主探索——合作交流——引导评价——实践应用——反思归纳”的教学模式,力求着眼于学生探究能力和创造性思维能力的培养,
提高学生的自主意识和合作精神。
六、教学程序和设想
《数学课程标准》强调,教师应发扬教学民� 据此本节课我分以下环节组织教学。 (一)创设情境,观察联想。 1、多媒体展示电视转播台、房屋人字架,让学生观察找出其中的几何图形?(等腰三角形、四边形、梯形) 2、两幅图中都有哪种几何图形?(等腰三角形)
从学生身边的生活和已有知识出发,创设情境,引导学生观察、联想,使学生感受到生活中处处有数学,并学会从数学的角度去观察事物,思考问题,激发学生对学习数学的兴趣和愿望。 (二)动手操作,揭示课题。 3、什么是等腰三角形?等边三角形?它们有何关系? 4、请学生动手作等腰三角形ABC,使AB=AC。裁下这个三角形,再动手折叠,当两腰重合时,找出发现哪些结论。
5、小组交流发现的结论。(两底重合,折痕是顶角角平分线,底边上的高,底边上的中线。 )
6、小组代表用语言表达得出的结论。
7、多媒体演示折叠过程,再现归纳得出的结论。
8、揭示、板书课题:等腰三角形性质。让学生温习、重现已学相关知识,为学习新知识做铺垫。
波利亚曾说过:“学习任何知识的最佳途径都是由自己去发现。”《新课程标准》要求通过实践、思考探索、交流获得知识,所以我在这里力图通过学生动手操作、动眼观察、动口交流表达,使学生充分感知等腰三角形性质。
(三)独立思考,探究新知。
9、对于观察得出的结论是否能进行论证,请学生动手试一试。
放手让学生决定自己的探索方向,鼓励学生选用不同的方法,把期望带给学生,让学生最大限度地发现自己的潜能,使学生形成自己对数学知识的理解和有效的学习策略。
(四)合作探究,交流创新。
10、当部分同学找到了问题的突破口,而少数找不到思路的同学也充分感知了困难,尝试了困难后,及时组织学生进行合作探究和交流,并作为合作者参与到学生的交流中。
组织学生探索、交流,有利于开阔学生的视野,形成一个既有独立思考,又有互相合作,广泛交流的学习氛围,培养学生合作精神。
(五)引导评价,形成规律。
11、小组合作交流后,请各小组一名代表上台讲解(给学困生提供上台机会,让他们尝试成功的喜悦)共有三种辅助方法:作∠A的角平分线AD、作 AD⊥BC、作BC边上的中线AD。通过师生、生生的相互补充评价,将探究活动引向深入,强化学生的创新思维训练。
12、等边三角形是特殊等腰三角形,它又具有哪些性质呢?
学生探索能得出:①每个角都相等,且都是60°,②每边上的高、中线、角平分线互相重合。
运用知识迁移在新知识的基础上探索新的未知,把学生的探究兴趣进一步推向高潮,激励学生要敢于迎接挑战,不断追求,锻炼意志。
13、阅读课本:等腰三角形性质(一)(注意:等边对等角、三线合一的几何语言表达)。培养学生的阅读能力和准确的几何语言表达能力。
(六)实践应用,巩固提高。
例:已知房屋的顶角∠ABC=100°,过屋顶的立柱AD⊥BC,屋椽AB=AC,根据图中条件,你能求出哪些角的度数。
把例题改编成开放题,为学生再一次创设探究情境,进一步培养学生的探究能力和思维的广阔性、灵活性。达标练习(抢答) ①填空。设计基础练习,体现素质教育的全员性,通过抢答训练,更好地激发学生的学习兴趣和求知欲望。
②△ABC中,AB=AC,D为BC上一点,DE⊥AB,FD⊥BC交AC于F点,∠A=56°,求∠ EDF的度数通过能力训练题,提高学生分析问题和解决问题的实践能力。
③应用:某厂车间的人字屋架为等腰三角形,跨度AB=12米,为使屋架更加牢固,需安装中柱CD,你能帮工人师傅确定中柱的位置吗?说明选用的工具和原理。进一步体现数学来源于实践,又应用于实践,培养学生的应用意识和应用能力。
(七)反思归纳,形成结构。
1、引导学生对学习过程进行小结:
①本节课你有哪些收获?(知识、方法、技能),你认为重点是什么?
②所学知识能解决哪些实际问题?
③本节课所运用的学习方法对你今后学习有什么启示?
2、布置作业:(分层布置)
这样进行课堂小结,关注学生个体差异,使每一个学生都有成功的学习体验,得到相应的提高和发展,进一步培养学生的主体意识,锻炼学生的归纳总结能力。