数轴教案【精编8篇】
【导言】此例“数轴教案【精编8篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
数轴【第一篇】
教学目标
1.了解数轴的概念和数轴的画法,掌握数轴的三要素;
2.会用数轴上的点表示有理数,会利用数轴比较有理数的大小;
3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。
教学建议
一、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础.
二、知识结构
有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:
定义
三要素
应用
数形结合
规定了原点、正方向、单位长度的直线叫数轴
原 点
正方向
单位长度
帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数
比较有理数大小,数轴上右边的数总比左边的数要大
在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。
三、教法建议
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。
关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。根据几个有理数在数轴上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。
四、数轴的相关知识点
1.数轴的概念
(1)规定了原点、正方向和单位长度的直线叫做数轴.
这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不可.二是这三个要素都是规定的.
(2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.
以数轴是理解有理数概念与运算的重要工具.有了数轴,数和形得到初步结合,数与表示数的图形(如数轴)相结合的思想是学习数学的重要思想.另外,数轴能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小.因此,应重视对数轴的学习.
2.数轴的画法
(1)画直线(一般画成水平的)、定原点,标出原点“O”.
(2)取原点向右方向为正方向,并标出箭头.
(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。
(4)标注数字时,负数的次序不能写错,如下图。
3.用数轴比较有理数的大小
(1)在数轴上表示的两数,右边的数总比左边的数大。
(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
(3)比较大小时,用不等号顺次连接三个数要防止出现“ ”的写法,正确应写成“ ”。
五、数轴定义的理解
1.规定了原点、正方向和单位长度的直线叫做数轴,如图1所示.
2.所有的有理数,都可以用数轴上的点表示.例如:在数轴上画出表示下列各数的点(如图2).
A点表示-4; B点表示-;
O点表示0; C点表示;
D点表示6.
从上面的例子不难看出,在数轴上表示的两个数,右边的数总比左边的数大,又从正数和负数在数轴上的位置,可以知道:
正数都大于0,负数都小于0,正数大于一切负数.
因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用 ,表示 是正数;反之,知道 是正数也可以表示为 。
同理, ,表示 是负数;反之 是负数也可以表示为 。
3.正数轴常见几种错误
1)没有方向
2)没有原点
3)单位长度不统一
教学设计示例
.2数轴【第二篇】
教学分析:
例3教学在直线上表示正数、0和负数,初步渗透数轴的概念,初步体会数轴上正负数的排列规律,从而形成数的比较完整的认知结构。例4教学借助数轴比较数的大小。
学情分析:学生在前面已经学习了在直线上表示正数和0,教材通过描述位置的问题引出如何在直线上表示正数、0和负数。由于有了前面学习正负数的经验,在学习例3时学生很容易想到“以大树为起点,向东为正,向西为负”,这样把学生运动后的位置和正负数对应起来,和前面学习的在直线上表示正数和0一样,最后补充完直线上其他的点。由于有例3的基础,学生比较容易在数轴上表示出未来一周每天的最低气温,教材在呈现出数轴上表示的结果后让学生比较这些数的大小,顺利通过例4的学习。
教学内容:教科书第5——7页例3、例4,及“做一做”的第1——3题。
教学目标:
1、能借助数轴初步学会比较正数、0和负数之间的大小。
2、初步学会用负数表示一些日常生活中的实际问题。
3、体验数学与生活的密切联系。
教学重难点:比较正数、0和负数的大小的方法。
教学准备:实物投影仪
教学过程:
(一)复习
在直线上表示数的方法(这里不仅有整数,还应包括分数和小数)
(二)认识数轴
1、出示例3的情境,提问:你能在一条直线上表示他们运动后的情况吗?
学生画图操作。
教师巡视,适当加以引导。(让学生确定好起点(原点)、方向和单位长度。)学生画完后交流画法。
教师根据学生的汇报在黑板上画数轴。
2、教师提问:怎样用数来简明的表示这些学生和大树的相对位置关系呢?
引导学生把直线上的点和正负数对应起来。
教师总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
3、教师:你能在数轴上表示出和-吗?如果从起点到-处,应如何运动?
让学生独立思考:如果从起点分别到和-处,应如何运动?
4、练习。
“做一做”第1题,让学生同位互相说一说各点表示的数。
“做一做”第2题,在数轴上表示各数,让学生独立完成,集体订正。
(三)结合数轴比较负数的大小
1、例4。
教师:最近气温变化无常,老师通过上网查询知道了未来一周的天气情况。(出示第6页例4主题图)
请同学们把未来一周每天的最低气温在数轴上表示出来,并比较它们的大小。
学生可能在比较-8和-6,-4和2的时候产生争议。
这时,出示小精灵的话:在数轴上,从左到右的顺序就是数从小到大的顺序。
2、让学生再次将未来一周每天的最低气温进行比较。
通过再次比较得出:负数比0小,正数比0大,负数比正数小。
设计意图:通过借助数轴,学生能较顺利的比较正负数和0的大小。
3、练习。
“做一做”第3题。在数轴上表示正负数和借助数轴上的点来比较数的大小。
(四)全课小结:这节课你有什么收获?
数轴【第三篇】
一、素质教育目标
(一)知识教学点
1.掌握数轴的三要素,能正确画出数轴.
2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.
(二)能力训练点
1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.
2.对学生渗透数形结合的思想方法.
(三)德育渗透点
使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.
(四)美育渗透点
通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.
二、学法引导
1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣―手脑并用―启发诱导―反馈矫正”的教学方法.
2.学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习.
三、重点、难点、疑点及解决办法
1.重点:正确掌握数轴画法和用数轴上的点表示有理数.
2.难点:有理数和数轴上的点的对应关系。
四、课时安排
1课时
五、教具学具准备
电脑、投影仪、自制胶片.
六、师生互动活动设计
师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习
七、教学步骤
(一)创设情境,引入新课
师:大家知识温度计的用途是什么?
生:温度计可以测量温度
(出示投影1)
三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.
师:三个温度计所表示的温度是多少?
生:2℃,-5℃,0℃.
我们能否用类似温度计的图形表示有理数呢?
这种表示数的图形就是今天我们要学的内容―数轴(板书课题).
教法说明从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容―数轴.再从温度计这个实物形象抽象出数轴来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.
(二)探索新知,讲授新课
1.数轴的画法
与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:
第一步:画直线定原点 原点表示0(相当于温度计上的0℃).
第二步:规定从原点向右的为正方向 那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).
第三步:选择适当的长度为单位长度 (相当于温度计上每1℃占1小格的长度).
教法说明教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.
让学生观察画好的直线,思考以下问题:
(出示投影1)
(1)原点表示什么数?
(2)原点右方表示什么数?原点左方表示什么数?
(3)表示+2的点在什么位置?表示-1的点在什么位置?
(4)原点向右个单位长度的A点表示什么数?原点向左 个单位长度的B点表示什么数?
根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.
学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充.
教法说明通过“观察―类比―思考―概括―表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.
教师根据学生回答给予肯定或否定,纠正后板书.
2.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.
向学生提出问题:数轴上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道数轴三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是数轴的依据.
学生活动:同桌之间、前后桌之间讨论.使学生从直观认识上升到理性认识.
3.尝试反馈,巩固练习
请大家回答下列问题:
(出示投影2)
(1)有人说一条直线是一条数轴,对不对?为什么?
(2)下列所画数轴对不对?如果不对,指出错在哪里?
学生活动:学生思考,不准讨论,想好后举手回答.
让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解.
教法说明此组练习的目的是巩固数轴的概念.
答案:(2)①缺原点,②缺正方向,③数轴不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轮上必须用同一单位长度进行度量.⑤⑦是数轴,同时⑦为学习习近平面直角坐标系打基础.
4.有理数与数轴上点的关系
通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示.
例1 画一条数轴,并画出表示下列各数的点:
1,5,0,-, .
学生练习:同学们在练习本上画一条数轴,然后在数轴上标出各点,一名学生板演.教师巡回指导,发现问题及时纠正.
教法说明让学生动手自己画数轴,有助于培养学生实际操作能力.例1是把给定的有理数用数轴上的点来表示,完成由“数”到“形”的思维过程,有助于学生加深对数轴概念的理解.
(出示投影4)
例2 指出数轴上 A、B、C、D、E各点分别表示什么数?
先让学生思考一会,然后学生举手回答
解:A表示-3;B表示 ; C表示3;D表示 ;E表 .
教法说明例2是让学生说出数轴上的点表示的有理数,完成了由“形”到“数”的思维过程.例1、例2从各自不同的两个侧面,体现出数形结合,渗透了数形之间相互转化的数学思想.
5.尝试反馈,巩固练习
(出示投影5)
①说出下面数轴上A、B、C、D、O、M各点表示什么数?
②将-3, ,,-6, ,, ,-5,1
各数用数轴上的点表示出来.
教法说明①题由点读数练习,②题由数找点练习,进一步巩固加深本节所学的内容.
(三)归纳小结
师:①数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示数与形之间的内在联系,是帮助学生理解数学、学习数学的重要思想方法.本章有理数的有关性质和运算都是结合数轴进行的.
②掌握数轴三要素,正确地画出数轴,提醒同学们,所有的有理数都可用数轴上的各点来表示,但是反过来不成立,即数轴上的各点,并不是都表示有理数.以后再研究.
八、随堂练习
1.判断题
(1)直线就是数轴( )
(2)数轴是直线( )
(3)任何一个有理数都可以用数轴上的点来表示( )
(4)数轴上到原点距离等于3的点所表示的数是+3( )
(5)数轴上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0.( )
2.画一条数轮,并画出表示下列各数的点
,-5,0,+,-
九、布置作业
(-)必做题:课本第56页1、2.
(二)选做题:课本第56页及第57页B组l.
(三)思考题:
①在数轮上距原点3个单位长度的点表示的数是_____________
②在数轮上表示-6的点在原点的___________侧,距离原点___________个单位长度,表示+6的点在原点的__________侧,距离原点____________个单位长度.
教法说明由于学生在知识、技能、能力方面发展不尽相同,所以分层次地布置作业 ,兼顾学习有困难和学有余力的学生,使他们都能达到大纲中规定的基本要求,并使部分学生能发展他们的数学才能.
十、板书设计
随堂练习答案
1.× √ √ × √ 2.略
作业 答案
(一)必做题
1.(1)依次是
(2)依次是
2.依次是
(二)选做题:
3.略 B组1.(1)-6,(2)-1,(3)3;(4)0
(三)思考题:① ②左,6,右,6
探究活动
(1)在数轴上表示出距离原点3个单位长度和个单位长度的点,并用“<”号将这些点所表示的数排列起来;
(2)写出比-4大但不大于2的所有整数.
分析:画数轴时,数轴的三要素:原点、正方向、单位长度缺一不可.
(1)在数轴上,距离原点3个单位长度和个单位长度的点各有两个,它们分别在原点两旁且关于原点对称.画出这些点,这些点所表示的数的大小就排列出来了;
(2)在数轴上画出大于-4但不大于2的数的范围,这个范围内整数点所表示的整数就是所求.“不大于2”的意思是小于或等于2.
解:(1)数轴上,距离原点3个单位的点是+3和-3,距离原点个单位的点是+和-.
由图看出:
-<-3<3<
(2)在数轴上画出大于-4但不大于2的数的范围.
由图知,大于-4但不大于2的整数是:-3,-2,-1,0,1,2.
点评:利用数轴,数形结合,是解这一类问题的好方法.
.2数轴【第四篇】
数轴 学案
学习目标:
1.会用数轴上的点表示有理数。
2.借助数轴了解相反数的概念,知道互为相反数的一对数在数轴上的位置关系,能用数轴比较有理数的大小。
学习规律:
经历从实际中抽出数学模型,从数形结合两个侧面理解问题,并能选择处理数学信息,作出大胆猜测。
练习1:
1.下列图形是数轴的是( )
数轴 学案。zip
上1篇: 数轴 教学设计
下1篇:数轴
数轴人生【第五篇】
数轴人生_小学作文
负半轴:过去的远方
太白大口地饮着对月金樽中的寂寞,发牢骚了:昨日之日不可留。
当岁月如水流逝,当记忆尘封往事,当历史背向而驰,过去在回首的那头挥手别离,成为一个或恋或怨的远方。
习惯了怀想过去。曾经的酸甜苦辣,曾经的悲欢离合,曾经的风花雪月。“春花秋月何时了,往事知多少。”一江春水的忧愁,也只好冲走过去,滚滚向东流,流向断肠人所在的天涯,不忍从远方复回。
或者沉醉过去,那有着兴盛辉煌,有着大笑高歌的远方——迟迟不肯清醒,迟迟不肯残酷,而后不知归路。对于负半轴这过去的远方,即使不堪回首也无法被挽救,即使意犹未尽也不能再驻足。当回忆成为一种盲目的昏睡时,噩梦就要悄悄袭来,侵蚀另一个远方的快乐和希冀。
原点:身边的今天
今日之日,我不要苦苦品尝抽刀断水、举杯消愁的烦忧,我更愿意珍惜“东篱采菊下,悠然见南山”的恬适。
有人说,一个今天胜过两个昨天。我想,一个今天也胜好几个明天吧。今天就在身边,它由每一个“此时此刻”合成。
它有形,像1篇形散神不散的散文,只有善于正视现实的情感,才能流露出真正的自然美;而倘若思想做作空虚,任凭姿势摆弄得多优雅多有个性,也是掩盖不住的吧。
它无形,像身边的空气,及时把握是一种零距离,放纵流过便是咫尺天涯。
原点,这身边的今天,如此近又如此远,没有坚持奋斗的决心和行动,再多的豪言壮语也只是灰飞烟灭间见笑的资本;没有爱惜时间的概念和勇气,生活中美好的情景与事物——诸如年轻、机遇、幸福等,就要不辞而别,匆匆地向远方逝去。
正半轴:未来的远方
“明日复明日,明日何其多。”未来的长度,决定着用心描摹刻画明日的个数。有限的是生命的墨水,无限的是延伸的精彩美丽。
习惯了憧憬未来。憧憬梦想的实现犹如渴望雨后的彩虹,憧憬美丽的世界犹如重逢久别的光明,憧憬未知的'精彩犹如探索奇妙的谜底。“我未知的未来,不要谁来编排。期待是种色彩,信手涂改。日子充满自信风采,未知的岁月有多么多姿多彩,由我自己来主宰。”
“长风破浪会有时,直挂云帆济沧海。”如此种种的雄心壮志扬起远航的风帆,指引前进的方向。正半轴,这未来的远方,海阔天高却需要我们风雨兼程。理想在拼搏的血汗浇灌下,方能散发出沁人心脾的花香。空想只是一颗没有着落的种子,即使有充足的阳光和水分,也会因“无地自容”而迅速衰老、死亡。
过去、现在、未来,统一融合成数轴人生。
我站在原点——正负的交界点,现在,点就在身边。
那么,我是属于过去,现在,还是未来呢?