首页 > 学习资料 > 教育其它 >

数轴说课稿精编4篇

网友发表时间 48615

发表时间

【前言导读】此篇优秀教学范文“数轴说课稿精编4篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

数轴说课稿1

一、教材分析:

本节是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。

二、学习任务分析;

1、要求学生会正确画出数轴初步了解有理数与数轴上的点的对应关系。

2、能将有理数用数轴上的点来表示。

3、通过观察数轴上的点的位置关系初步比较有理数的大小,并能通过数轴上点的移动说出表示点的数

三、目标分析:

1、通过回忆和实例使学生掌握数轴的概念,并理解其三要素。

2、通过动手画数轴和数轴的概念,观察数轴上点的位置关系,了解点与数之间的关系。

3、通过图形与数量的对应关系了解数学研究的一种重要方法-----数形结合。

4、通过实例启发思维调动学生学习数学的兴趣使学生充分体验实践生活离不开数学

四、教法选择

创设情景、动手操作、模拟演示、启发引导、学习应用、发展能力。针对学生的年龄特点和心理特征,以及他们的认知水平,采用探究式教学方法,教学中注意课堂民主、平等氛围的营造使学生始终处于主动学习的状态,鼓励学生团结协作、大胆猜想、动手操作。同时,教师要给学生思维活动提供具体、直观、感性的支持,所以本节课的设计借助直观演示、动手操作、启发诱导,由感性认识逐步上升到理性认识。

本节课的引入采用先回忆再从实例引入的教学方法,激发学生学习兴趣。

概念的得出采用比较探索式的教学方法,坚持以学生为主体,充分发挥学生的主观能动性。教学中,让学生自已动手画数轴,培养学生探究问题的能力。改变原来的"听数学"为"做数学"。

数轴应用采用分层式的教学方法,根据不同学生的实际,进行不同层次的教学。促进他们的全面发展。特别注重基本理论在实际生活中的应用,体现数学应用于生活的一面。

五、教学重难点的确定和突破

1、正确画出数轴是本节教学的重点。

首先回忆小学生学过的知识直线上用点表示数量数轴的三角形,再通过实物如:标尺、温度计等,要求同学们通过观察能建立数轴的概念模型通过提问:标尺及温度计上的数据有什么规律?从而引出数轴的方向性及数轴的原点和单位长度,上面的过程可以由学生讨论,教师补充从而概括数轴的概念即三要素。

2、变式;从而也可归纳出数轴商店表示即,数与点的对应关系。

通过例题要求学生动手操作画出数轴并描述点

说明:(1),可能有不少学生会忘记正方向

(2),原点左边的数的表识会发生标反的错误。

(3),数轴上的正方向,同时也表示由小到大的方向。

(4),单位长度的截取可以是任意长度,不是唯一的。

(5),数轴的方向也不是唯一的,如温度折线图等,方向也可以是向上的。

3、正确画出数轴后,即使点在数轴上的表示,整数的表示学生很容易理解,强调一下,分数和小数的表示是这一节课的难点,首先通过例题:

通过在数轴上描点:4,-2,-4,5,1/3,0

先对数进行分类,正数,零,负数,负数在0(既原点)的左边,正数在原点的右边再按整数和分数描点,通过练习巩固能说出数轴上的点表示什么数?

p23练习中第3题为下节课的内容做下了铺垫,即数的大小比较,这里要求学生能在新排列一下,使学生能了解数轴哂纳感,负数、0、正数,之间的关系。

4、提高:下列说法正确的是:

(1),在+3和+4之间没有正数

(2),在0和—1之间没有负数

(3),在+1和+2之间有无穷个正分数

(4),在0、1、和0、2之间没有正分数

这题通过数轴的直观描述进一步说明数轴上的点与有理数之间的关系,使学生能从感性认识上升到理性认识,进一步提高学生的逻辑思维能力和提高分析问题的能力。

5、创新题:

一个点从数轴上的原点开始的先向左移动两个单位长度,再向右移动三个单位长度,如图:

由图可以看出,到达终点是表示数1的点,画图表示一个点从数轴上原点开始,按下列条件移动两次后到达的终点,并说出它是表示什么数的点:

(1)向左移动4单位长度,再向左移动2个单位长度

(2)向右移动2个单位长度,再向左移动3个单位长度

(3)向左移动2个单位长度,再向右移动5个单位长度

这是一道源于运动变化思想设计的题目,借助点在数轴上从原点开始的连续两次沿直线方向的运动后,将终点的数写出。一要认识方向,二要把握运动距离,可提高学生的运动思维,有助开动学生的变化的观念。

六、小结:

(1)归纳学习了哪些内容?

(2)归纳学习的思想方法?

本节课的设计是以教学大纲和教材为依据,采用探索式教学。遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。所以,在教法上,不采用课本单刀直入的探索式推理方法(即先给出结论,再推理论证),而是让学生亲自动手实践,观察类比,使学生产生求知快乐感,同时也对学生进行了辩证唯物主义的教育。而这种处理,化难为易,抓住教材对学生能力培养的基本要求,达到异曲同工之妙。

数轴说课稿2

我说课的内容是七年级教科书第一册第二章第二节"数轴"的第一课时 内容。我从以下几个方面对本节课的教学设计进行说明。

一:教材分析:

本节课主要是在学生学习了有理数概念的基础上, 从标有刻度的温度计 表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法, 初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数 的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具, 还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

二:教学目标:

根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学 目标如下:

1. 使学生理解数轴的三要素,会画数轴。

2. 能将已知的有理数在数轴上表示出来, 能说出数轴上的已知点所表示 的有理数,理解所有的有理数都可以用数轴上的点表示

3. 向学生渗透数形结合的数学思想, 让学生知道数学来源于实践, 培养 学生对数学的学习兴趣。

三:教学重难点确定:

正确理解数轴的概念和有理数在数轴上的表示方法是本节课的教学重 点,建立有理数与数轴上的点的对应关系(数与形的结合)是本节课的教学难点。

四:学情分析:

⑴知识掌握上,七年级学生刚刚学习有理数中的正负数,对正负数的概 念理解不一定很深刻, 许多学生容易造成知识遗忘, 所以应全面系统的去讲述。

⑵学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生

不易理解, 容易造成画图中掉三落四的现象, 所以教学中教师应予以简单明白、 深入浅出的分析。 ⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注 意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住 学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使 他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见 解,发挥学生学习的主动性。 ⑷心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认 识到数学课的科学性, 学好数学有利于其他学科的学习以及学科知识的渗透性。

五:教学策略:由于七年级学生的理解能力和思维特征, 他们往往需要依赖直观具体形 象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数 的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有 趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启 发式教学法和师生互动式教学模式, 注意师生之间的情感交流, 并教给学生"多 观察、动脑想、大胆猜、勤钻研"的研讨式学习方法。教学中积极利用板书和练 习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口 的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。 为充分发挥学生的主体性和教师的主导辅助作用, 教学过程中设计了七 个教学环节:

(一)、温故知新,激发情趣

(二)、得出定义,揭示内涵

(三)、手脑并用,深入理解

(四)、启发诱导,初步运用

(五)、反馈矫正,注重参与

(六)、归纳小结,强化思想

(七)、布置作业,引导预习

六:教学程序设计:

(一)、温故知新,激发情趣: 首先复习提问:有理数包括那些数?学生回答后让大家讨论:你能找出 用刻度表示这些数的实例吗?学生会举出很多例子,但是由于温度计与数轴最 为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象 概括为数轴这一数学模型,于是让学生观察一组温度计,并提问:

(1)零上 5°C 用 5 表示。

(2)零下 15°C 用 -15 表示。

(3)0°C 用 0 表示。 然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出 读数,用直线上的点表示正数、负数和 0 呢?答案是肯定的,从而引出课题: 数轴。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会 到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了 思想上的准备。

(二)、得出定义,揭示内涵: 教师设问:到底什么是数轴?如何画数轴呢?

(1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表 示0,数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。)

(2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为 正方向是习惯与方便所作,由于我们只能画出直线的一部分, 因此标上箭头指明 正方向,并表示无限延伸。)

(3)选取单位长度,标数(这里说明任选适当的长度作为单位长度, 标数时从原点向右每隔一个单位长度取一点,依次表示

2、3…负数反之。 单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)

由于画数轴是本节课的教学重点, 教师板书这三个步骤, 给学生以示范。 画完数轴后教师引导学生讨论:"怎样用数学语言来描述数轴?"(通过 教师的亲切的语言启发学生,以培养师生间的默契) 通过讨论由师生共同得到数轴的定义:规定了原点、正方向和单位长度 的直线叫做数轴。 至此,我们将一个具体的事物"温度计"经过抽象而概括为一个数学概念 "数轴",使学生初步体验到一个从实践到理论的认识过程。 (三)、手脑并用,深入理解:

1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么? A、 B、 C、 D、 E、 F、 A、B、C 三个图形从数轴的三要素出发,D 和 F 是学生可能出现的错 误,给学生足够的观察、思考的时间然后展开充分的讨论,教师参与到学生的 讨论之中去接触学生,认识学生,关注学生。

2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练 习本上画一个数轴,(请同学画在黑板上) 学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完 后教师给出评价,如"很好""很规范""老师相信你,你一定行"等语言来激励学 生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的三要素, 画数轴时这三要素缺一不可。 我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正 确概念的理解;一个是通过动手操作加深对概念的理解。

(四)、启发诱导,初步运用: 有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴 上的点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数的学 习埋下伏笔,这里不再展开。 安排课本 23 页的例

1, 利用黑板上的例题图形让学生来操作,教师提出要求:

1、要把点标在线上

2、要把数标在点的上方 通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点 表示数的方法,同时激发学生的学习兴趣,调动学生的积极性,从而使学生真 正成为教学的主体。 当然,此题还可以再说出几个有理数让学生去标点,好让更多的学生去 展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加 深对数形结合思想的理解。 (五)、反馈矫正,注重参与: 为巩固本节的教学重点让学生独立完成:

1、课本 23 页练习

2、课本 23 页 3 题的(给全体学生以示范性让一个同学板书) 为向学生进一步渗透数形结合的思想让学生讨论:

3、数轴上的点 P 与表示有理数 3 的点 A 距离是

(1)试确定点 P 表示的有理数;

(2)将 A 向右移动 2 个单位到 B 点,点 B 表示的有理数是多少?

(3) 再由 B 点向左移动 9 个单位到 C 点, C 点表示的有理数是多少? 则 先让学生通过小组讨论得出结果, 通过以上练习使学生在掌握知识的基 础上达到灵活运用,形成一定的能力。 (六)、归纳小结,强化思想: 根据学生的特点,师生共同小结:

1、为了巩固本节课的教学重点提问:你知道什么是数轴吗?你会画数轴 吗?这节课你学会了用什么来表示有理数?

2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示 两个不同的有理数? 让学生牢固掌握一个有理数只对应数轴上的一个点, 并能说出数轴上已 知点所表示的有理数。

七:板书设计:(略)

数轴说课稿3

老师们:您们好!

我说课的内容"数轴"的第一课时内容。

一:教材分析:

本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低。

这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数,绝对值等有理数知识的重要工具,还是以后学好不等式的解法,函数图象及其性质等内容的必要基础知识。

二:教学目标:

根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:

1、使学生理解数轴的三要素,会画数轴。

2、能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示

3、向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。

三:教学重,难点:

正确理解数轴的概念和有理数在数轴上的表示方法是本节课的教学重点,建立有理数与数轴上的点的对应关系(数与形的结合)是本节课的教学难点。

四:教材分析:

⑴知识掌握上,七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。

⑵学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中丢三落四的现象,所以教学中教师应予以简单明白,深入浅出的分析。

⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;

由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动,有趣,高效,特将整节课以观察,

思考,讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生"多观察,动脑想,大胆猜,勤钻研"的研讨式学习方法。教学中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,

使学生在动脑,动手,动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。

为充分发挥学生的主体性和教师的主导辅助作用,教学过程中设计了七个教学环节:

(一),温故知新,激发情趣

(二),得出定义,揭示内涵

(三),手脑并用,深入理解

(四),启发诱导,初步运用

(五),反馈矫正,注重参与

(六),归纳小结,强化思想

(七),布置作业,引导预习

五:教学程序设计:

(一),温故知新,激发情趣:

首先复习提问:有理数包括那些数学生回答后让大家讨论:你能找出用刻度表示这些数的实例吗?学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并提问:

(1)零上5°C用 5 表示。

(2)零下15°C 用 —15 表示。

(3)0°C 用 0 表示。

然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数,负数和0呢?答案是肯定的,从而引出课题:数轴。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。

(二),得出定义,揭示内涵:

教师设问:到底什么是数轴?如何画数轴呢

(1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读,画方便,同时也为了有美的感觉。)

(2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯与

方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表示无限延伸。)

(3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1,2,3…负数反之。单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)

由于画数轴是本节课的教学重点,教师板书这三个步骤,给学生以示范。

画完数轴后教师引导学生讨论:"怎样用数学语言来描述数轴"(通过教师的亲切的语言启发学生,以培养师生间的默契)

通过讨论由师生共同得到数轴的定义:规定了原点,正方向和单位长度的直线叫做数轴。

至此,我们将一个具体的事物"温度计"经过抽象而概括为一个数学概念"数轴",使学生初步体验到一个从实践到理论的认识过程。

(三),手脑并用,深入理解:

1,让学生讨论:下列图形哪些是数轴,哪些不是,为什么

A,

B,

C,

D,

E,

F,

A,B,C三个图形从数轴的三要素出发,D和F是学生可能出现的错误,给学生足够的观察,思考的时间然后展开充分的讨论,教师参与到学生的讨论之中去接触学生,认识学生,关注学生。

2,为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练习本上画一个数轴,(请同学画在黑板上)

学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完后教师给出评价,如"很好""很规范""老师相信你,你一定行"等语言来激励学生,以促进学生的发展;并强调:原点,正方向和单位长度是数轴的三要素,画数轴时这三要素缺一不可。

我设计以上两个练习,一个是动脑想,通过分析,判断正误来加深对正确概念的理解;一个是通过动手操作加深对概念的理解。

(四),启发诱导,初步运用:

有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴上的点是否只表示有理数呢作为一个问题我让学生去思考,为后面实数的学习埋下伏笔,这里不再展开。

安排课本23页的例1,

利用黑板上的例题图形让学生来操作,教师提出要求:

1,要把点标在线上2,要把数标在点的上方

通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点表示数的方法,

同时激发学生的学习兴趣,调动学生的积极性,从而使学生真正成为教学的主体。

当然,此题还可以再说出几个有理数让学生去标点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。

(五),反馈矫正,注重参与:

为巩固本节的教学重点让学生独立完成:

1,课本23页练习1,2

2,课本23页3题的(给全体学生以示范性让一个同学板书)为向学生进一步渗透数形结合的思想让学生讨论:

3,数轴上的点P与表示有理数3的点A距离是2,

(1)试确定点P表示的有理数;

(2)将A向右移动2个单位到B点,点B表示的有理数是多少

(3)再由B点向左移动9个单位到C点,则C点表示的有理数是多少

先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。

(六),归纳小结,强化思想:

根据学生的特点,师生共同小结:

1,为了巩固本节课的教学重点提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数

2,数轴上,会不会有两个点表示同一个有理数,会不会有一个点表示两个不同的有理数

让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数。

(七),布置作业,引导预习:

为面向全体学生,安排如下:

1,全体学生必做课本25页1,2,3

2,最后布置一个思考题:

与温度计类似,数轴上两个不同的点所表示的两个有理数大小关系如何

(来引导学生养成预习的学习习惯)

六:板书设计:(略)

总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主,探究,合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。

以上是我对本节课的设想,不足之处请老师们多多批评,指正,谢谢!

数轴说课稿4

尊敬的各位老师们:你们好

今天我说课的题目是人教版数学七年级上册第一章第2节《数轴》。下面,我将从背景分析、教学目标设计、、课堂结构和教学媒体设计、教学过程设计及教学评价设计等几个方面对本课的设计进行说明。

一。背景分析

1、教材的地位及作用

“数轴”是人教版七年级数学上册第一章第二节“有理数”的重点内容之一,是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。

2、教学重点、难点的分析

教学的重点:1)正确理解数轴的概念;2)正确掌握数轴的画法和用数轴上的点表示有理数。

教学的难点:正确理解有理数与数轴上点的对应关系,体会数形结合的数学思想。

3、教材的处理

1)通过观察温度计及师生互动表示课本第10页中的问题,使学生明白数与形的对应,初步认识数形结合的美妙之处。

2)通过讲解数轴的概念,概括出数轴三要素,指导学生正确地画出数轴。

3)通过练习,使学生准确地掌握数轴的概念,并会用数轴表示有理数,进一步体会数形结合。

4)通过课本第11页的归纳,使学生深化对数轴概念的理解。

二、教学目标设计

1、知识技能

1)掌握数轴的概念,并理解其三要素,能正确地画出数轴。2)会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数。理解任何有理数在数轴上都有唯一的点与之对应

2、数学思考

1)通过观察与思考,建立数轴的概念。

2)通过对数轴的学习,初步体会对应的思想、数形结合的思想。

3、解决问题

会利用数轴解决有关问题。

4、情感态度

通过对数轴的学习,向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。

三。课堂结构和教学媒体设计

1、教学方法

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以学生既为主体,又为客体的原则下,展现获取知识和方法的思维过程,因为新课标和新理念认为,获得数学知识的过程比获得知识更为重要。基于本节课的特点:课堂教学采用了“情境-问题-观察-思考-提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地掌握数轴的概念,并通过练习,使学生更好地理解数轴概念,从而体会数形结合的思想。

有方法就要有手段进行依托,我所采用的教学手段是:多媒体辅助教学通过课件演示,创设情境,让学生分四人小组讨论、交流、总结,并派代表发言。教师耐心引导、分析、讲解和提问,并及时对学生的意见进行肯定与评议,从而突出教师是学生获取知识的启发者、引导者、帮助者和参与者的形象。

2、学法指导

现代新教育理念认为,学习数学不应只是单调刻板的简单模仿、机械背诵与操练,而应该采用设置现实的问题情景,有意义的,富有挑战性的学习内容来引起学习者的兴趣。为达到提升学生的学习兴趣,我们应强调探究学习、发现学习、研究学习、合作学习才能改变学生原来的那种“学而无思,思而无疑,有疑不问”的旧学习方式。

要达到学生主动的学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究-主动总结-主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。

学生的工具:直尺或三角板

四。教学过程设计

活动1创设情境引入新课

1)观察温度计,并填空:

℃ ℃ ℃

师生行为:老师演示课件,学生观察并举手发言。

设计意图:通过让学生观察温度计并填空,为学习数轴概念做好铺垫。

2)课本第10页问题:在一条东西方向的马路上,有一个汽车站,汽车站东3m和处分别有一棵柳树和一棵杨树,汽车站西3m和处分别有一棵槐树和一根电线杆,试画图表示这一情境。

师生行为:老师发问:“请同学们思考:怎样用数简明地表示这些树、电线杆与汽车站的相对位置(方向、距离)?”学生分四人小组讨论,并画出图形。老师巡堂查看学生完成的情况,并请最先做好的两个小组派代表到黑板演示。

设计意图:通过学生的活动,让学生认识到:考虑东西方向马路上一些树、电线杆与汽车站的相对位置关系,既要考虑距离,又要考虑方向,从而需要用正负数描述。

3)再次观察课本图、温度计,找出它们之间的共同之处

师生行为:老师引导学生观察、比较。学生组内讨论,并派代表发表意见,老师及时给予肯定和评议。

设计意图:通过比较,学生容易发现正数、0和负数都可以用一条直线上点表示出来。

活动2学习数轴的概念

一般地,在数学中人们用画图的方式把数“直观化”。通常用一条直线上的点表示数。这条直线叫做数轴。

数轴满足以下要求:1)在直线上任取一个点表示数0,这个点叫做原点。2)规定直线上从原点向右(或上)为正方向,通常以向右为正方向。3)选取适当的长度为单位长度,直线上每隔一个单位长度取一个点。

师生行为:老师讲解数轴的概念,说明画数轴说要满足的条件,并提醒学生数轴的三要素;学生观察、理解。

设计意图:初步认识数轴的概念及其所需要的条件。

活动3数轴概念的应用

1)讨论下列数轴画得对错?并思考你认为画数轴最重要的三个因素是什么?

①师生行为:学生组内讨论交流,派代表发言,老师进行总结,并概括数轴

的三要素。

设计意图:通过学生讨论,交流和反思,使学生认识数轴的三要素。

2)画数轴

画数轴的步骤:1.画直线;2.在直线上取一点作为原点;3.确定正方向,并用箭头表示4.根据需要选取适当单位长度。

师生行为:师生共同归纳画数轴的步骤,要求学生独立画出数轴,并互相交流,老师巡堂并参与交流使学生弄清如何画数轴。

设计意图:通过学生画数轴,交流和反思,使学生真正掌握数轴的概念。

3)在数轴上表示右边各数: +2 -

4)指出数轴上A,B,C,D各点分别表示什么数。

解:点A表示-2;点B表示2;点C表示0;点D表示-1。

师生行为:观看课件的题目,要求学生在自己所画的数轴上完成,再由老师演示答案。

设计意图:让学生明白任何一个有理数都可以用数轴上的一个点来表示。

活动4数轴概念的深化

填空:数轴上表示-2的点在原点的边,距原点的距离是,表示3的点在原点的边,距原点的距离是。

归纳:一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

师生行为:通过填空,老师引导学生做出课本第12页的归纳。

设计意图:通过从特殊到一般的方法归纳出数轴上的点的特征,逐步培养学生的抽象概括(从具体的数到字母表示的数)能力

活动5巩固数轴的概念

课堂练习:

1)课本第12页的练习1、2题

2)强化练习(1)在数轴上标出到原点的距离小于3的整数。(2)在数轴上标出-5和+5之间的所有的整数。

师生行为:学生练习,老师巡堂、指导。

设计意图:通过练习,巩固数轴的概念;强化练习是为了培养学生用数轴解决问题的能力。

作业:课本第17页习题第2题;学生用书同步训练。

设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。

五、教学评价设计

这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。

总之,在这节课上,我始终以学生为主体创设情景,激发学生的学习兴趣;、让学生主体参与,探索新知识,充分体现了以学生为主体的新理念;联系实际,数学源于生活,服务于生活,让学生轻松快乐的学习数学,才是新课程改革的最终价值取向。我相信,有了快乐,数学课堂将焕发出生命的光彩。

谢谢大家!

相关推荐

热门文档