动量守恒定律教案【汇编4篇】
动量守恒定律表明,在一个孤立系统内,总动量保持不变。通过实验和实例,阐述其在碰撞、爆炸等现象中的应用,增强学生对物理规律的理解。下面是勤劳的小编为大家分享的动量守恒定律教案【汇编4篇】范例,欢迎借鉴参考。
动量守恒定律教案【第一篇】
一、教材分析
1.教材的地位和作用:
这一章讲述动量的概念,并结合牛顿定律推导出《动量定理》和《动量守恒定律》。《动量定理》体现了力在时间上的累积效果。为解决力学问题开辟了新的途径,尤其是打击和碰撞的问题。这一章可视为牛顿力学的进一步展开,为力学的重点章。
《动量定理》为本章第二节,是第一节《动量和冲量》的延续,同时又为第三节《动量守恒定律》奠定了基础,在本章起有承前启后的作用。同时《动量定理》的知识与人们的日常生活、生产技术和科学研究有着密切的关系,因此学习这部分知识有着广泛的现实意义。
2.本节教学重点:
(1)动量定理的推导和对动量定理的理解;
(2)利用动量定理解释有关现象和一维情况下的定量分析。
3.教学难点:
动量定理的矢量性,在实际问题中的正确应用
4.教学目标:
●知识与技能
(1)能从牛顿运动定律和运动学公式推导出动量定理的表达式。
(2)理解动量定理的确切含义,知道动量定理适用于变力。
(3)会用动量定理解释有关现象和处理有关的问题。
●过程与方法
(1)通过动量定理规律的学习过程,了解物理学的研究方法,认识物理实验、物理模型和传感器在物理学发展过程中的作用。
(2)通过学习用动量定理处理实际问题的过程,提高质疑、信息搜集和处理能力,分析、解决问题的能力和交流、合作的能力
●情感态度与价值观
(1)有将物理知识应用于生活和生产实践的意识,勇于探索与日常生活有关的`物理问题。
(2)了解并体会物理学对社会发展的贡献,关注并思考与物理学相关的热点问题,有可持续发展的意识,能在力所能及的范围内,为社会的可持续发展做出贡献。
(3)关心国内、国外科技发展现状与趋势,有振兴中华的使命感与责任感,有将科学服务于人类的意识。
二、学生情况分析
高一学生思维方式要求逐步由形象思维向抽象思维过渡,因此在教学中需以一些感性认识作为依托,加强直观性和形象性,以便学生理解。
补充录像资料以及瓦碎蛋全的演示实验、模拟建筑工人安全带的演示实验
录像:排球击球动作要快、铸铁打磨时速度要快;篮球接球手臂后缩、跳高运动员落地垫厚垫子、体操运动员落地都要屈膝,
图片:“勇气号”探测器成功登陆火星过程的一组图片,易碎品运输过程。
三、教学方法
应用实验导入法、启发学生通过自己的思考和讨论来探究动量定理。
四、教学程序
本节课分为四个环节,演示实验创设问题情景;建立模型共同探究;定性和定量应用动量定理。
第一环节:创设情景
为了保证建筑工人高空作业时人身安全,我们选用什么样的安全带比较好。结实的钢绳还是结实的弹性绳?
演示实验:模拟建筑工人从高空坠落分别系弹性绳和无弹性绳的对比演示实验(要挑选软度合适的橡皮泥做实验)
(两次物体都从同一高度自由下落,两次绳长相同)
实验现象:用弹性绳的那次橡皮泥完好无损,另一次橡皮泥被铁丝切成两半,断面非常整齐,
学生尝试解释现象。
第二环节:建立模型推导动量定理
此时,学生有了对力、时间、动量、冲量的初步感性认识,需要在老师的帮助下提高到理性认识。
引导学生建立模型,物体的运动分两个阶段,第一阶段物体自由下落同样的高度,获得同样的动量,第二阶段,经过一定的时间动量减为零
讨论第二阶段过程中,力的冲量和物体动量变化之间的关系
结论:动量变化相同时,时间长,力小
推广,生活中还有很多这样的例子:杯子落到水泥地上碎,落到地毯上就不碎;从高处落地都要屈膝;跳远前要松沙坑。
这些说明动量和冲量之间一定是有联系的,你能找出它们之间的关系么?
设一个物体以速度v1在光滑水平地面上运动,在同方向水平恒力F作用下,经过时间t,速度变为v2,由牛顿第二定律可得:Ft=mv2-mv1。
变力作用下动量定理还成立吗?
利用传感力和速度传感器当场测数据,
让小车在光滑水平轨道上向固定的力传感器运动,测出小车撞击传感过程中小车受到外力-时间图像,速度传感器测出次过程中的速度-时间图像。
分析数据发现:碰撞过程中外力的总冲量与碰撞前后动量的变化几乎一样。
所以,变力作用下,动量定理也成立。
动量动量守恒定律教案【第二篇】
碰撞中的动量守恒
1、实验目的、原理
(1)实验目的
运用平抛运动的知识分析、研究碰撞过程中相互作用的物体系动量守恒
(2)实验原理
(a)因小球从斜槽上滚下后做平抛运动,由平抛运动知识可知,只要小球下落的高度相同,在落地前运动的时间就相同,若用飞行时间作时间单位,小球的水平速度在数值上就等于小球飞出的水平距离。
(b)设入射球、被碰球的质量分别为m
1、m2,则入射球碰撞前动量为(被碰球静止)p1=m1v1①
设碰撞后m1,m2的速度分别为v’
1、v’2,则碰撞后系统总动量为
p2=mlV’1+m2v’2②
只要测出小球的质量及两球碰撞前后飞出的水平距离,代入①、②两式就可研究动量守恒。
2、买验器材
斜槽,两个大小相同而质量不等的小钢球,天平,刻度尺,重锤线,白纸,复写纸,三角板,圆规。
3、实验步骤及安装调试
(1)用天平测出两个小球的质量ml、m2.
(2)按图5—29所示安装、调节好实验装置,使斜槽末端切
线水平,将被碰小球放在斜槽末端前小支柱上,入射球放在斜
槽末端,调节支柱,使两小球相碰时处于同一水平高度,且在
碰撞瞬间入射球与被碰球的球心连线与斜槽末端的切线平
行,以确保正碰后两小球均作平抛运动。
(3)在水平地面上依次铺放白纸和复写纸。
(4)在白纸上记下重锤线所指的位置O,它表示入射球m1碰
撞前的位置,如图5—30所示。
(5)移去被碰球m2,让入射球从斜槽上同一高度滚下,重复10次左右,用圆规画尽可能小的圆将所有的小球落点圈在里面,其圆心即为人射球不发生碰撞情况下的落点的平均位置P,如图5—31所示。
(6)将被碰小球放在小支柱上,让入射球从同一高度滚下,使它们发生正碰,重复10次左右,同理求出入射小球落点的平均位置M和被碰小球落点的平均位置N.
(7)过O、N作一直线,取O0’=2r(r为小球的半径,可用刻度尺和三角板测量小球直径计算厂),则O’即为被碰小球碰撞前的球心的位置(即投影位置)。(8)用刻度尺测量线段OM、OP、ON的长度。则系统碰撞前的动量可表示为p1=m1·OP,系统碰撞后的总动量可表示为p2=m1·OM+m2·O'N
若在误差允许范围内p1与p2相等,则说明碰撞中动量守恒。(9)整理实验器材,放回原处。
4、注意事项
(1)斜槽末端切线必须水平。
说明:调整斜槽时可借助水准仪判定斜槽末端是否水平。
(2)仔细调节小立柱的高度,使两小球碰撞时球心在同一高度,且要求两球球心连线与斜槽末端的切线平行。
(3)使小支柱与槽口的距离等于2r(r为小球的半径)
(4)入射小球每次都必须从斜槽上同一位置由静止开始滚下。
说明:在具体操作时,斜槽上应安装挡球板。
(5)入射球的质量(m1)应大于被碰小球的质量(m2)。
(6)地面须水平,白纸铺放好后,在实验过程中不能移动白纸。
5、数据处理及误差分析
(1)应多次进行碰撞,两球的落地点均要通过取平均位置来确定,以减小偶然误差。
(2)在实验过程中,使斜槽末端切线水平和两球发生正碰,否则两小球在碰后难以作平抛运动。
(3)适当选择挡球板的位置,使入射小球的释放点稍高。
说明:入射球的释放点越高,两球相碰时作用力越大,动量守恒的误差越小,且被直接测量的数值OM、0IP、0N越大,因而测量的误差越小。
一。目的要求
1、用对心碰撞特例检验动量守恒定律;
2、了解动量守恒和动能守恒的条件;
3、熟练地使用气垫导轨及数字毫秒计。
二。原理
1、验证动量守恒定律
动量守恒定律指出:若一个物体系所受合外力为零,则物体的总动量保持不变;若物体系所受合外力在某个方向的分量为零,则此物体系的总动量在该方向的分量守恒。
设在平直导轨上,两个滑块作对心碰撞,若忽略空气阻力,则在水平方向上就满足动量守恒定律成立的条件,即碰撞前后的总动量保持不变。
m1u1m2u2m1v1m2v2() 其中,u
1、u2和v
1、v2分别为滑块m
1、m2在碰撞前后的速度。若分别测出式()中各量,且等式左右两边相等,则动量守恒定律得以验证。
2、碰撞后的动能损失
只要满足动量守恒定律成立的条件,不论弹性碰撞还是非弹性碰撞,总动量都将守恒。但对动能在碰撞过程中是否守恒,还将与碰撞的性质有关。碰撞的性质通常用恢复系数e表达:
ev2v1() u1u
2式()中,v2v1为两物体碰撞后相互分离的相对速度,u1u2则为碰撞前彼此接近的相对速度。
(1)若相互碰撞的物体为弹性材料,碰撞后物体的形变得以完全恢复,则物体系的总动能不变,碰撞后两物体的相对速度等于碰撞前两物体的相对速度,即v2v1u1u2,于是e1,这类碰撞称为完全弹性碰撞。
(2)若碰撞物体具有一定的塑性,碰撞后尚有部分形变残留,则物体系的总动能有所损耗,转变为其他形式的能量,碰撞后两物体的相对速度小于碰撞前的相对速度,即0v2v1u1u2于是,0e1,这类碰撞称为非弹性碰撞。
(3)碰撞后两物体的相对速度为零,即v2v10或v2v1v,两物体粘在一起以后以相同速度继续运动,此时e0,物体系的总动能损失最大,这类碰撞称为完全非弹性碰撞,它是非弹性碰撞的一种特殊情况。
三类碰撞过程中总动量均守恒,但总动能却有不同情况。由式()和()可求碰撞后的动能损失 Ek(1/2)m1m21e2u1u2/m1m2 。①对于完全弹性碰撞,因2
e1,故Ek0,即无动能损失,或曰动能守恒。②对于完全非弹性碰撞,因e0,故:EkEkM,即,动能损失最大。③对于非完全弹性碰撞,因0e1,故动能损失介于二者之间,即:0EkEkM。
3、 m1m2m,且u20的特定条件下,两滑块的对心碰撞。
(1)对完全弹性碰撞,e1,式()和()的解为
v10()v2u1
由式()可知,当两滑块质量相等,且第二滑块处于静止时,发生完全弹性碰撞的结果,使第一滑块静止下来,而第二滑块完全具有第一滑块碰撞前的速度,“接力式”地向前运动。即动能亦守恒。
以上讨论是理想化的模型。若两滑块质量不严格相等、两挡光物的有效遮光宽度s1及若式()得到验证,则说明完全弹性碰撞过程中动量守恒,且e1,Ek0,s2也不严格相等,则碰撞前后的动量百分差E1为:E1
动能百分差E2为:E2P2P1P1m2s2t1() m1s1t22m2s2t121() 22m1s1t2Ek2Ek1Ek
1若E1及E2在其实验误差范围之内,则说明上述结论成立。
(2)对于完全非弹性碰撞,式()和()的解为:
v1v2vu1()
2若式()得证,则说明完全非弹性碰撞动量守恒,且e0,其动能损失最大,约为50%。
s1。同样可求得其动考虑到完全非弹性碰撞时可采用同一挡光物遮光,即有:s2
及E2分别为: 量和动能百分差E1
m2t1P2P11E1mt1() P112
2Ek1m2t1'Ek()E21'1Ekm1t2
显然,其动能损失的百分误差则为:
m2t1E21mt1()
12
及E在其实验误差范围内,则说明上述结论成立。 若E1
三。仪器用品
气垫导轨及附件(包括滑块及挡光框各一对),数字毫秒计、物理天平及游标卡尺等。
四。实验内容
1、用动态法调平导轨,使滑块在选定的运动方向上做匀速运动,以保证碰撞时合外力为零的条件(参阅附录2);
2、用物理天平校验两滑块(连同挡光物)的质量m1及m2;
2;3.用游标卡尺测出两挡光物的有效遮光宽度s
1、s2及s
14、在m1m2m的条件下,测完全弹性和完全非弹性碰撞前后两滑块各自通过光电
、t2。 门一及二的时间t
1、t2及t1
五。注意事项
1、严格按照气垫导轨操作规则(见附录2),维护气垫导轨;
2、实验中应保证u20的条件,为此,在第一滑块未到达之前,先用手轻扶滑块(2),待滑块(1)即将与(2)碰撞之前再放手,且放手时不应给滑块以初始速度;
3、给滑块(1)速度时要平稳,不应使滑块产生摆动;挡光框平面应与滑块运动方向一致,且其遮光边缘应与滑块运动方向垂直;
4、严格遵守物理天平的操作规则;
5、挡光框与滑块之间应固定牢固,防止碰撞时相对位置改变,影响测量精度。
六。考查题
1、动量守恒定律成立的条件是什么?实验操作中应如何保证之?
2、完全非弹性碰撞中,要求碰撞前后选用同一挡光框遮光有什么好处?实验操作中如何实现?
3、既然导轨已调平,为什么实验操作中还要用手扶住滑块(2)?手扶滑块时应注意什么?
4、滑块(2)距光电门(2)近些好还是远些好?两光电门间近些好还是远些好?为什么?
动量守恒定律教案【第三篇】
动量守恒定律
三维教学目标
1、知识与技能:掌握运用动量守恒定律的一般步骤。
2、过程与方法:知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。
3、情感、态度与价值观:学会用动量守恒定律分析解决碰撞、爆炸等物体相互作用的问题,培养思维能力。
教学重点:运用动量守恒定律的一般步骤。
教学难点:动量守恒定律的应用。
教学方法:教师启发、引导,学生讨论、交流。
教学用具:投影片、多媒体辅助教学设备。
(一)引入新课
动量守恒定律的内容是什么?分析动量守恒定律成立条件有哪些?(①F合=0(严格条件)②F内远大于F外(近似条件,③某方向上合力为0,在这个方向上成立。)
(二)进行新课
1、动量守恒定律与牛顿运动定律
用牛顿定律自己推导出动量守恒定律的表达式。
(1)推导过程:
根据牛顿第二定律,碰撞过程中1、2两球的加速度分别是:
根据牛顿第三定律,F1、F2等大反响,即F1=-F2所以:
碰撞时两球间的作用时间极短,用表示,则有:
代入并整理得
这就是动量守恒定律的表达式。
(2)动量守恒定律的重要意义
从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中微子的存在。(2000年高考综合题23②就是根据这一历史事实设计的)。又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。
2、应用动量守恒定律解决问题的基本思路和一般方法
(1)分析题意,明确研究对象
在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体� 对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的。
(2)要对各阶段所选系统内的。物体进行受力分析
弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力。在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。
(3)明确所研究的相互作用过程,确定过程的始、末状态
即系统内各个物体的初动量和末动量的量值或表达式。
注意:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。
(4)确定好正方向建立动量守恒方程求解。
3、动量守恒定律的应用举例
例2:如图所示,在光滑水平面上有A、B两辆小车,水平面的左侧有一竖直墙,在小车B上坐着一个小孩,小孩与B车的总质量是A车质量的10倍。两车开始都处于静止状态,小孩把A车以相对于地面的速度v推出,A车与墙壁碰后仍以原速率返回,小孩接到A车后,又把它以相对于地面的速度v推出。每次推出,A车相对于地面的速度都是v,方向向左。则小孩把A车推出几次后,A车返回时小孩不能再接到A车?
分析:此题过程比较复杂,情景难以接受,所以在讲解之前,教师应多带领学生分析物理过程,创设情景,降低理解难度。
解:取水平向右为正方向,小孩第一次
推出A车时:mBv1-mAv=0
即:v1=
第n次推出A车时:mAv+mBvn-1=-mAv+mBvn
则:vn-vn-1=,
所以:vn=v1+(n-1)
当vn≥v时,再也接不到小车,由以上各式得n≥取n=6
点评:关于n的取值也是应引导学生仔细分析的问题,告诫学生不能盲目地对结果进行“四舍五入”,一定要注意结论的物理意义。
课后补充练习
(1)(2002年全国春季高考试题)在高速公路上发生一起交通事故,一辆质量为15000kg向南行驶的长途客车迎面撞上了一辆质量为3000kg向北行驶的卡车,碰后两车接在一起,并向南滑行了一段距离后停止。根据测速仪的测定,长途客车碰前以20m/s的速度行驶,由此可判断卡车碰前的行驶速率为()
A.小于10m/sB.大于10m/s小于20m/s
C.大于20m/s小于30m/sD.大于30m/s小于40m/s
(2)如图所示,A、B两物体的质量比mA∶mB=3∶2,它们原来静止在平板车C上,A、B间有一根被压缩了的弹簧,A、B与平板车上表面间动摩擦因数相同,地面光滑。当弹簧突然释放后,则有()
、B系统动量守恒、B、C系统动量守恒
C.小车向左运动D.小车向右运动
(3)把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、弹、车,下列说法正确的是
A.枪和弹组成的系统,动量守恒
B.枪和车组成的系统,动量守恒
C.三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系统动量近似守恒
D.三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合力为零
(4)甲乙两船自身质量为120kg,都静止在静水中,当一个质量为30kg的小孩以相对于地面6m/s的水平速度从甲船跳上乙船时,不计阻力,甲、乙两船速度大小之比:v甲∶v乙=_______.
(5)(2001年高考试题)质量为M的小船以速度v0行驶,船上有两个质量皆为m的小孩a和b,分别静止站在船头和船尾。现在小孩a沿水平方向以速率v(相对于静止水面)向前跃入水中,然后小孩b沿水平方向以同一速率v(相对于静止水面)向后跃入水中。求小孩b跃出后小船的速度。
(6)如图所示,甲车的质量是2kg,静止在光滑水平面上,上表面光滑,右端放一个质量为1kg的小物体。乙车质量为4kg,以5m/s的速度向左运动,与甲车碰撞以后甲车获得8m/s的速度,物体滑到乙车上。若乙车足够长,上表面与物体的动摩擦因数为,则物体在乙车上表面滑行多长时间相对乙车静止?(g取10m/s2)
4、反冲运动与火箭
演示实验1:老师当众吹一个气球,然后,让气球开口向自己放手,看到气球直向学生飞去,人为制造一点“惊险气氛”,活跃课堂氛围。
演示实验2:用薄铝箔卷成一个细管,一端封闭,另一端留一个很细的口,内装由火柴头上刮下的药粉,把细管放在支架上,用火柴或其他办法给细管加热,当管内药粉点燃时,生成的燃气从细口迅速喷出,细管便向相反的方向飞去。
演示实验3:把弯管装在可以旋转的盛水容器的下部,当水从弯管流出时,容器就旋转起来。
提问:实验1、2中,气球、细管为什么会向后退呢?实验3中,细管为什么会旋转起来呢?
看起来很小的几个实验,其中包含了很多现代科技的基本原理:如火箭的发射,人造卫星的上天,大炮发射等。应该如何去解释这些现象呢?这节课我们就学习有关此类的问题。
(1)反冲运动
A、分析:细管为什么会向后退?(当气体从管内喷出时,它具有动量,由动量守恒定律可知,细管会向相反方向运动。)
B、分析:反击式水轮机的工作原理:当水从弯管的喷嘴喷出时,弯管因反冲而旋转,这是利用反冲来造福人类,象这样的情况还很多。
为了使学生对反冲运动有更深刻的印象,此时再做一个发射礼花炮的实验。分析,礼花为什么会上天?
(2)火箭
对照书上“三级火箭”图,介绍火箭的基本构造和工作原理。
播放课前准备的有关卫星发射、“和平号”空间站、“探路者”号火星探测器以及我国“神舟号”飞船等电视录像,使学生不仅了解航天技术的发展和宇宙航行的知识,而且要学生知道,我国的航天技术已经跨入了世界先进行列,激发学生的爱国热情。阅读课后阅读材料——《航天技术的发展和宇宙航行》。
动量动量守恒定律教案【第四篇】
一、教学目标
1、知道动量守恒定律的内容,掌握动量守恒定律成立的条件,并在具体问题中判断动量是否守恒。
2、学会沿同一直线相互作用的两个物体的动量守恒定律的推导。 3.知道动量守恒定律是自然界普遍适用的基本规律之一。
二、重点、难点分析
1、重点是动量守恒定律及其守恒条件的判定。 2.难点是动量守恒定律的矢量性。
三、教具
1、气垫导轨、光门和光电计时器,已称量好质量的两个滑块(附有弹簧圈和尼龙拉扣)。
2、计算机(程序已输入)。
四、教学过程
(一)引入新课
前面已经学习了动量定理,下面再来研究两个发生相互作用的物体所组成的物体系统,在不受外力的情况下,二者发生相互作用前后各自的动量发生什么变化,整个物体系统的动量又将如何?
(二)教学过程设计
1、以两球发生碰撞为例讨论“引入”中提出的问题,进行理论推导。 画图:
设想水平桌面上有两个匀速运动的球,它们的质量分别是m1和m2,速度分别是v1和v2,而且v1>v2。则它们的总动量(动量的矢量和)p=p1+p2=m1v1+m2v2。经过一定时间m1追上m2,并与之发生碰撞,设碰后二者的速度分别为v1'和v2',此时它们的动量的矢量和,即总动量p'=p1'+p2'=m1v1'+m2v2'。
板书:p=p1+p2=m1v1+m2v2 p'=p1'+p2'=m1v1'+m2v2'
下面从动量定理和牛顿第三定律出发讨论p和p'有什么关系。 设碰撞过程中两球相互作用力分别是F1和F2,力的作用时间是t。根据动量定理,m1球受到的冲量是F1t=m1v1'-m1v1;m2球受到的冲量是
F2t=m2v2'-m2v2。
根据牛顿第三定律,F1和F2大小相等,方向相反,即F1t=(m2v2'-m2v2) 整理后可得
板书:m1v1'+m2v2'=m1v1+m2v2 或写成
p1'+p2'=p1+p2
就是p'=p 这表明两球碰撞前后系统的总动量是相等的。 分析得到上述结论的条件:
两球碰撞时除了它们相互间的作用力(这是系统的内力)外,还受到各自的重力和支持力的作用,但它们彼此平衡。桌面与两球间的滚动摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。 2.结论:相互作用的物体所组成的系统,如果不受外力作用,或它们所受外力之和为零。则系统的总动量保持不变。这个结论叫做动量守恒定律。
做此结论时引导学生阅读课文。并板书。
∑F外=0时
p'=p 3.利用气垫导轨上两滑块相撞过程演示动量守恒的规律。 (1)两滑块弹性对撞(将弹簧圈卡在一个滑块上对撞)
光电门测定滑块m1和m2第一次(碰撞前)通过A、B光门的时间t1和t2以及第二次(碰撞后)通过光门的时间t1'和t2'。光电计时器记录下这四
个时间。
将t
1、t2和t1'、t2'输入计算机,由编好的程序计算出v
1、v2和v1'、v2'。将已测出的滑块质量m1和m2输入计算机,进一步计算出碰撞前后的动量p
1、p2和p1'、p2'以及前后的总动量p和p'。
由此演示出动量守恒。
注意:在此演示过程中必须向学生说明动量和动量守恒的矢量性问题。因为v1和v2以及v1'和v2'方向均相反,所以p1+p2实际上是|p1|-|p2|=0,同理p1'+p2'实际上是|p1'|-|p2'|。
(2)两滑块完全非弹性碰撞(将弹簧圈取下,两滑块相对面各安装尼龙子母扣)
为简单明了起见,可让滑块m2静止在两光电门之间不动(p2=0),滑块m1通过光门A后与滑块m2相撞,二者粘合在一起后通过光门B。
光门A测出碰前m1通过A时的时间t,光门B测出碰后m1+m2通过B时的时间t'。将t和t'输出计算机,计算出p1和p1'+p2'以及碰前的总动量p(=p1)和碰后的总动量p'。由此验证在完全非弹性碰撞中动量守恒。
(3)两滑块反弹(将尼龙拉扣换下,两滑块间挤压一弹簧片) 将两滑块置于两光电门中间,二者间挤压一弯成∩形的弹簧片(铜片)。同时松开两手,钢簧片将两滑块弹开分别通过光电门A和B,测定出时间t1和t2。
将t1和t2输入计算机,计算出v1和v2以及p1和p2。
引导学生认识到弹开前系统的总动量p0=0,弹开后系统的总动量pt=|p1|-|p2|=0。总动量守恒,其数值为零。
4、例题
甲、乙两物体沿同一直线相向运动,甲的速度是3m/s,乙物体的速度是1m/s。碰撞后甲、乙两物体都沿各自原方向的反方向运动,速度的大小都是2m/s。求甲、乙两物体的质量之比是多少?
引导学生分析:对甲、乙两物体组成的系统来说,由于其不受外力,所以系统的动量守恒,即碰撞前后的总动量大小、方向均一样。
由于动量是矢量,具有方向性,在讨论动量守恒时必须注意到其方向性。为此首先规定一个正方向,然后在此基础上进行研究。
板书解题过程,并边讲边写。 板书:
讲解:规定甲物体初速度� 则v1=+3m/s,v2=1m/s。碰后v1'=-2m/s,v2'=2m/s 根据动量守恒定律应有m1v1+m2v2=m1v1'+m2v2'移项整理后可得m1比m2为
代入数值后可得m1/m2=3/5,即甲、乙两物体的质量比为3∶5。 5.练习题
质量为30kg的小孩以8m/s的水平速度跳上一辆静止在水平轨道上的平板车,已知平板车的质量是80kg,求小孩跳上车后他们共同的速度。
分析:对于小孩和平板车系统,由于车轮和轨道间的滚动摩擦很小,可以不予考虑,所以可
板书解题过程:
跳上车前系统的总动量
p=mv 跳上车后系统的总动量
p'=(m+M)V 由动量守恒定律有mv=(m+M)V 解得
6、小结
(1)动量守恒的条件:系统不受外力或合外力为零时系统的动量守恒。
(2)动量守恒定律适用的范围:适用于两个或两个以上物体组成的系统。动量守恒定律是自然界普遍适用的基本规律,对高速或低速运动的物体系统,对宏观或微观系统它都是适用的。