首页 > 学习资料 > 教案大全 >

数轴 七年级数学《数轴》教案【推荐5篇】

网友发表时间 2459808

【导言】此例“数轴 七年级数学《数轴》教案【推荐5篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

数轴说课稿【第一篇】

尊敬的各位老师们:你们好

今天我说课的题目是人教版数学七年级上册第一章第2节《数轴》。下面,我将从背景分析、教学目标设计、、课堂结构和教学媒体设计、教学过程设计及教学评价设计等几个方面对本课的设计进行说明。

一。背景分析

1. 教材的地位及作用

“数轴”是人教版七年级数学上册第一章第二节“有理数” 的重点内容之一,是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。

2. 教学重点、难点的分析

教学的重点:1)正确理解数轴的概念;2)正确掌握数轴的画法和用数轴上的点表示有理数。

教学的难点:正确理解有理数与数轴上点的对应关系,体会数形结合的数学思想。

3. 教材的处理

1)通过观察温度计及师生互动表示课本第10页中的问题,使学生明白数与形的对应,初步认识数形结合的美妙之处。

2)通过讲解数轴的概念,概括出数轴三要素,指导学生正确地画出数轴。

3)通过练习,使学生准确地掌握数轴的概念,并会用数轴表示有理数,进一步体会数形结合。

4)通过课本第11页的归纳,使学生深化对数轴概念的理解。

二、教学目标设计

1. 知识技能

1)掌握数轴的概念,并理解其三要素,能正确地画出数轴。2)会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数。理解任何有理数在数轴上都有唯一的点与之对应

2.数学思考

1)通过观察与思考,建立数轴的概念。

2)通过对数轴的学习,初步体会对应的思想、数形结合的思想。

3.解决问题

《数轴》教学设计【第二篇】

一、教学目标

1.使学生正确理解数轴的意义,掌握数轴的三要素;

2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

3.使学生初步理解数形结合的思想方法。

二、教学重点和难点

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数。

难点:正确理解有理数与数轴上点的对应关系。

三、课堂教学过程设计

(一)创设情境,引入新课

师:大家知识温度计的用途是什么?

生:温度计可以测量温度

(出示投影1)

三个温度计。其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度。

师:三个温度计所表示的温度是多少?

生:2℃,-5℃,0℃.

我们能否用类似温度计的图形表示有理数呢?

这种表示数的图形就是今天我们要学的内容—数轴(板书课题).

(二)探索新知,讲授新课

1.数轴的画法

与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:

第一步:画直线定原点 原点表示0(相当于温度计上的0℃).

第二步:规定从原点向右的为正方向 那么相反的方向(从原点向左)则为负方向。(相当于温度计上℃以上为正,0℃以下为负).

第三步:选择适当的长度为单位长度 (相当于温度计上每1℃占1小格的长度).

(出示投影1)

(1)原点表示什么数?

(2)原点右方表示什么数?原点左方表示什么数?

(3)表示+2的点在什么位置?表示-1的点在什么位置?

(4)原点向右个单位长度的a点表示什么数?原点向左 个单位长度的b点表示什么数?

根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义。

学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答。大家思考准备更正或补充。

教师根据学生回答给予肯定或否定,纠正后板书。

2.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。

向学生提出问题:数轴上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道数轴三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是数轴的依据。

学生活动:同桌之间、前后桌之间讨论。使学生从直观认识上升到理性认识。

3.尝试反馈,巩固练习

请大家回答下列问题:

(出示投影2)

(1)有人说一条直线是一条数轴,对不对?为什么?

(2)下列所画数轴对不对?如果不对,指出错在哪里?

学生活动:学生思考,不准讨论,想好后举手回答。

让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解。

4.有理数与数轴上点的关系

通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示。

例1  画一条数轴,并画出表示下列各数的点:

1,5,0,-, .

学生练习:同学们在练习本上画一条数轴,然后在数轴上标出各点,一名学生板演。教师巡回指导,发现问题及时纠正。

例2 指出数轴上 a、b、c、d、e各点分别表示什么数?

先让学生思考一会,然后学生举手回答解:a表示-3;b表示 ; c表示3;d表示 ;e表 .

上1篇: 数轴练习

下1篇:《 数轴说课稿

.2数轴【第三篇】

数轴 学案

学习目标:

1.会用数轴上的点表示有理数。

2.借助数轴了解相反数的概念,知道互为相反数的一对数在数轴上的位置关系,能用数轴比较有理数的大小。

学习规律:

经历从实际中抽出数学模型,从数形结合两个侧面理解问题,并能选择处理数学信息,作出大胆猜测。

练习1:

1.下列图形是数轴的是(   )

数轴 学案。zip

上1篇: 数轴 教学设计

下1篇:数轴

.2数轴【第四篇】

教学要求

1.会正确画出数轴。

2.会用数轴上的点表示有理数,能说出数轴上(表示有理数)的点所表示的数。

3.会利用数轴比较有理数的大小。

4.初步感受“数形结合”的思想方法。

教学过程设计建议(第一课时)

1.情境创设

观察温度计或刻度尺上刻度的排列顺序,直观地将小学里用直线上的点表示数的方法推广到用来表示有理数,正确建立数轴的概念。除温度计和刻度尺外,杆秤、天平等都是较好的数学模型。

2.探索活动

(1)观察温度计或刻度尺上的刻度,根据课本上两个卡通人的提示,引导学生讨论:直线上的点能表示负数(如一10,一15)吗?通过在温度计上找一10 ℃、一15℃的位置的活动,感受可以用直线上的点表示负数。

(2)依据画数轴的步骤,正确画出数轴。可以在安排2~3名学生“板演”的同时巡视全班,及时给予针对性的操作指导。

数轴的位置通常是水平的,但也可以是任意位置的,要发现并及时展示那些画法正确但放置方向不同、单位长度不同的数轴。要特别注意指导学生正确标注负数。

可以让学生对照“做一做”的几个步骤共同评价  “板演”作业,形成对数轴的正确认识。

3.例题教学

例2是让学生学会在数轴上表示有理数,教师还可以再增加一些练习,然后引导学生评价卡通人的结论。需要注意的是,不要提及“数轴上任何一点是否都表示一个有理数”之类的话题,因为虽然任何一个有理数在数轴上都有惟一的点与它对应,但有理数与数轴上的点并不一一对应,而这是学生当前无法认识和回答的。

可以根据学生的实际情况,适当增加在数轴上表示分数的练习。

教学过程设计建议(第二课时)

1.探索活动

借助生活经验(温度的高低),引导学生探索:

数轴上的点的位置与它所表示的数的大小有什么关系,得出“在数轴上右边的点所表示的数大于左

边的点所表示的数”。

“议一议”中的第2个问题,应组织学生认真操作,为得出上述结论增加感性认识。

对于两个负数比较大小,学生比较陌生,教学中还可以采用以下方法:

在数轴上,表示一3的点a在原点左边3个单位长度,表示一2的点b在原点左边2个单位长度,不难看出点a在点b的左边,即得一3<一2.

数轴上的点从左到右的顺序,就是它所表示的数从小到大的顺序。这种规定与日常生活结论是一致的。

2.例题教学

例3较简单,直接应用结论的第二部分进行判断;例4给出了利用数轴比较两个负数大小的规范表述。

3.小结

“数形结合”是化抽象为直观、化难为易的一种常用的数学方法。华罗庚先生指出:“数缺形时少直观,形少数时难入微。”小结时,除要讲清数轴本身的意义外,还应通过有理数的大小比较,让学生感受到这一方法带来的便利。

上1篇: 数轴 学案

下1篇:华师大版七上 数轴(含答案)

数轴人生【第五篇】

数轴人生_小学作文

负半轴:过去的远方

太白大口地饮着对月金樽中的寂寞,发牢骚了:昨日之日不可留。

当岁月如水流逝,当记忆尘封往事,当历史背向而驰,过去在回首的那头挥手别离,成为一个或恋或怨的远方。

习惯了怀想过去。曾经的酸甜苦辣,曾经的悲欢离合,曾经的风花雪月。“春花秋月何时了,往事知多少。”一江春水的忧愁,也只好冲走过去,滚滚向东流,流向断肠人所在的天涯,不忍从远方复回。

或者沉醉过去,那有着兴盛辉煌,有着大笑高歌的远方——迟迟不肯清醒,迟迟不肯残酷,而后不知归路。对于负半轴这过去的远方,即使不堪回首也无法被挽救,即使意犹未尽也不能再驻足。当回忆成为一种盲目的昏睡时,噩梦就要悄悄袭来,侵蚀另一个远方的快乐和希冀。

原点:身边的今天

今日之日,我不要苦苦品尝抽刀断水、举杯消愁的烦忧,我更愿意珍惜“东篱采菊下,悠然见南山”的恬适。

有人说,一个今天胜过两个昨天。我想,一个今天也胜好几个明天吧。今天就在身边,它由每一个“此时此刻”合成。

它有形,像1篇形散神不散的散文,只有善于正视现实的情感,才能流露出真正的自然美;而倘若思想做作空虚,任凭姿势摆弄得多优雅多有个性,也是掩盖不住的吧。

它无形,像身边的空气,及时把握是一种零距离,放纵流过便是咫尺天涯。

原点,这身边的今天,如此近又如此远,没有坚持奋斗的决心和行动,再多的豪言壮语也只是灰飞烟灭间见笑的资本;没有爱惜时间的概念和勇气,生活中美好的情景与事物——诸如年轻、机遇、幸福等,就要不辞而别,匆匆地向远方逝去。

正半轴:未来的远方

“明日复明日,明日何其多。”未来的长度,决定着用心描摹刻画明日的个数。有限的是生命的墨水,无限的是延伸的精彩美丽。

习惯了憧憬未来。憧憬梦想的实现犹如渴望雨后的彩虹,憧憬美丽的世界犹如重逢久别的光明,憧憬未知的'精彩犹如探索奇妙的谜底。“我未知的未来,不要谁来编排。期待是种色彩,信手涂改。日子充满自信风采,未知的岁月有多么多姿多彩,由我自己来主宰。”

“长风破浪会有时,直挂云帆济沧海。”如此种种的雄心壮志扬起远航的风帆,指引前进的方向。正半轴,这未来的远方,海阔天高却需要我们风雨兼程。理想在拼搏的血汗浇灌下,方能散发出沁人心脾的花香。空想只是一颗没有着落的种子,即使有充足的阳光和水分,也会因“无地自容”而迅速衰老、死亡。

过去、现在、未来,统一融合成数轴人生。

我站在原点——正负的交界点,现在,点就在身边。

那么,我是属于过去,现在,还是未来呢?

相关推荐

热门文档

20 2459808