首页 > 学习资料 > 教案大全 >

实用人教版一次函数教案范例【汇编8篇】

网友发表时间 3093185

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“实用人教版一次函数教案范例【汇编8篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

最新人教版一次函数教案范文【第一篇】

本课的内容是人教版八年级上册第14章第2节第2课时,就是课本115到116页的内容。在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

(二)说教学目标。

基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

知识技能:

1、理解直线y=kx+b与y=kx之间的位置关系;。

2、会利用两个合适的点画出一次函数的图象;。

数学思考:

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

情感态度:

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

(三)说教学重点难点。

教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

最新人教版一次函数教案范文【第二篇】

知识目标了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。

能力目标通过讨论和练习,进一步培养学生的观察、比较、分析的能力。

情感目标通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。

难点判断一组数是不是某个二元一次方程组的解,培养学生良好的。数学应用意识。

教学过程。

一、引入、实物投影。

2、请每个学习小组讨论(讨论2分钟,然后发言)。

[1] [2] [3]。

最新人教版一次函数教案范文【第三篇】

知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

教学重难点。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

教学过程。

(一)引入新课。

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。

(二)进行新课。

(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?

此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的坐标。

进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。

3、列一元二次不等式。

解法1:设上网时间为分,若按方式a则收元;若按方式b则收元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式a省钱;当上网时间等于400分时,选择方式a、b没有区别;当上网时间多于400分时,选择方式b省钱。

解法2:设上网时间为分,方式b与方式a两种计费的差额为元,得到一次函数:,即,然后画出函数的图象,计算出直线与轴的交点坐标,类似地用点位置的高低直观地找到答案。

注意:所画的函数图象都是射线。

4、习题。

(1)、以方程的解为坐标的所有点都在一次函数_____的图象上。

(2)、方程组的解是________,由此可知,一次函数与的图象必有一个交点,且交点坐标是________。

5、旅游问题。

古城荆州历史悠久,文化灿烂。

最新人教版一次函数教案范文【第四篇】

一次函数解析式的求法一般是采用待定系法,对于学生而言,如何理解这种方法是解决这一问题的关键。

为了解决这个问题,我举了这样一个例子:已知直线y=kx+b经过点(1,2)和点(-2,3)试求这个函数关系式?学生们很容易想到列方程组解决这个问题,我却提出了一个比较简单的问题,为什么你要选择列方程组解决这个问题,你的目的是什么?我教的那个班的学生沉默了好久,是啊,对于学生来说,他们习惯于如何做题,却从不想为什么采用这种方法,这种方法的出发点是什么?经过一段时间的思考,有的学生终于答出了这个问题:他们说这是为了确定k,b的值,只要k,b的值确定了,那么一次函数解析式就确定下来了。而实际他们回答的恰恰是待定系数法的精髓,学生们只有能理解到这一点才能领会到待定系数法的精髓。进而我总结,如果知道一次函数图象上个点就能确定它的解析式。如上例是显而易见的两点。

接着我给出另一个例题:已知一次函数图象过点(1,-2),且与直线y=3x+2交y轴于同一点,试求该函数的解析式。这个题一个点显而易见,另一个点是隐含的,学生们开始找到一个明线,通过分析找到了另一个暗线,最终大家一致认为两点确定一条直线,想求一次函数的解析式,只要找到两个点的坐标就行。

最后我出了一个例题:一个一次函数的图象,与直线y=2x+1的交点m的横坐标为2,与直线y=-x+2的交点n的纵坐标为1,求这个一次函数的解析式。学生们发现没有一条明线,全是暗线,但只要理解找两个点求一次函数解析式,看似难的问题就会迎刃而解。如果学生能理解透这三道其实是一类题,他们就会利用待定系数法求一次函数解析式了。

最新人教版一次函数教案范文【第五篇】

通过对这节课的教学研究,我深刻地认识到新课程背景下的数学课堂教学应注意:

1、教师要“放得开”,做一个边缘人。我们应该充分相信学生,给学生成长的机会和空间。不再搞“包办代替”,不能急性子。凡是学生能做的,就应该让他们自主去做;凡是学生之间能合作完成的,就应该让他们自主探究。给学生一滴水的机会,也许他会收获一片海洋。

2、要做到“问题引领”,用问题牵引学习。本节课的设计给予学生的基础,设计了多个学生容易解决的问题串,这样,能够在循序渐进中学到知识。

3、要创造性地使用教材。教学过程中,不应局限于教材,而应充分利用教材这个平台,伸向与教材有关的领域。数学是思维的体操,因此,若能对数学教材科学安排,对问题妙引导,有意识地引导学生有意识地主动学习更多更全面的数学知识,变“传授”为“探究”,充分暴露知识的发生发展过程,以探索者的身份去发现问题、总结规律。

4、注重探究,体验知识的形成过程。数学教学从本质上讲,是教师和学生以课堂为主渠道的交流活动,是教师和学生在某种教学情境中的探究活动。这节课教师本着“让学生充分经历知识的形成、发展和应用过程,充分体验数学的发现和创造历程”的教学理念,对教学过程和教学手段作了充分的准备。整节课学生在教师的引导下逐步探索、不断发现,品尝到了数学学习的乐趣,教师的主导作用和学生的主体地位都得到了很好地体现。

总之,我们的教学工作是一项内涵丰富的系统工程。教学中用问题引领学生,提升效率,不是一朝一夕就可以取得明显成效的,它更是一个复杂的课题。“冰冻三尺,非一日之寒”,在教学中必须循序渐进,长期实践,与时俱进,争取做教学改革的有心人,只有这样才能在教学研究工作中有所作为。因此,在实际教学中,我们应时刻以学生为中心,充分给予学生成长的时间,鼓励学生自主探究,采用适时激励与点拨的方法使学生的思维活跃起来,让课堂真正成为学生学习、发现的乐园。

最新人教版一次函数教案范文【第六篇】

3、学会开放性地寻求设计方案,培养分析。

教学难点用方程组刻画和解决实际问题的过程。

知识重点经历和体验用方程组解决实际问题的过程。

教学过程(师生活动)设计理念。

(出示问题)据以往的统计资料,甲、乙两种作物的单位面积产量的比是1:1:5,现要在一块长200m,宽100m的长方形土地上种植这两种作物,怎样把这块地分为两个长方形,使甲、乙两种作物的总产量的比是3:4(结果取整数)?以学生身边的实际问题展开学习,突出数学与现实的联系,培养学生用数学的意识。

探索分析。

研究策略以上问题有哪些解法?

学生自主探索,合作交流,整理思路:

(2)先求两个小长方形的面积比,再计算分割线的位置.。

(3)设未知数,列方程组求解.。

……。

学生经讨论后发现列方程组求解较为方便.多角度分析问题,多策略解决问题,提高思维的发散性。

合作交流。

解决问题引导学生回顾列方程解决实际问题的基本思路。

(1)设未知数。

(2)找相等关系。

(3)列方程组。

(4)检验并作答。

解这个方程组得。

过长方形土地的长边上离一端约106m处,把这块地分。

为两个长方形.较大一块地种甲作物,较小一块地种乙作物.。

你还能设计别的种植方案吗?

用类似的方法,可沿平行于线段ab的方向分割长。

方形.。

教师巡视、指导,师生共同讲评.。

比较分析,加深对方程组的认识。

画图,数形结合,辅助学生分析。

进一步渗透模型化的思想。

引发学生思考,寻求解决途径。

拓展探究。

按以下步骤展开问题的讨论:

(l)学生独立思考,构建数学模型.。

(2)小组讨论达成共识.。

(3)学生板书讲解.。

(4)对方程组的解进行探究和讨论,从而得到实际问题的结果.。

(5)针对以上结论,你能再提出几个探索性问题吗?以学生学习生活中遇到的。

问题展开讨论,巩固用二元一次。

小结与作业。

小结提高提问:通过本节课的讨论,你对用方程解决实际的方法又有何新的`认识?

学生思考后回答、整理.。

布置作业12、必做题:教科书116页习题第1(2)、4题。

13、选做题:教科书117页习题第7题。

14、备15、选题:

(3)解方程组。

小彬看见了,说:“我来试一试.”结果小彬七拼八凑,拼成如图2那样的正方形.咳,怎么中间还留下一个洞,恰好是边长2mm的小正方形!

你能帮他们解开其中的奥秘吗?

提示学生先动手实践,再分析讨论.。

分层次布1作业.其中“必。

做题”面向全体学生,巩固知识、

方法,加深理解厂选做题”面向。

部分学有余力的学生,给他们一。

定的时间和空间,相互合作,自主探究,增强实践能力.备选通供教师参考.。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

本课所提供的例题、练习题、作业题突出体现以下特点:

2、探索性.问题解决的策略不易获得,问题中的数量关系不易发现,问题中的未知数不。

易设定,这为学生开展探究活动提供了机会.。

最新人教版一次函数教案范文【第七篇】

依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。因此我选用了以下教学方法:

1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。

目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

2、直观教学法——利用多媒体现代教学手段。

目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

2、学法指导。

做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。本着这样的原则,课上指导学生采用以下学习方法。

1、应用自主探究。培养学生独立思考能力,阅读能力和自主探究的学习习惯。

2、指导学生观察图象,分析材料。培养观察总结能力。

最新人教版一次函数教案范文【第八篇】

2、结合一次函数的图像,掌握一次函数及其图像的简单性质。

过程与方法目标

1、经历对一次函数性质的探索过程,增强学生数形结合的意识,培养学生识图能力;

2、经历对一次函数性质的探索过程,培养学生的观察力、语言表达能力。

情感与态度目标

经历一次函数及性质的探索过程,在合作与交流活动中发展学生的合作意识和能力。

本节通过对一次函数图像的研究,对一次函数的单调性作了探讨;对一次函数的几何意义也有涉及。在教学中要结合学生的认识情况,循序渐进,逐层深入,对教材内容可作适当增加,但不宜太难。

教学重点:结合一次函数的图像,研究一次函数的简单性质。

教学难点:一次函数性质的应用。

学生已经对一次函数的图像有了一定的认识,在此基础上,结合一次函数的图像,通过问题的设计,引导学生探讨一次函数的简单性质,学生是较容易掌握的。

(一)做一做

在同一直角坐标系内分别作出一次函数y=2x+6,y=2x1,y=x+6,y=5x的图象。

(二)议一议

上述四个函数中,随着x值的增大,y的值分别如何变化?

学生:有的在增大,有的在减小。

学生讨论:y=2x+6和y=5x这两个一次函数在增大;y=2x1和y=x+6在减小;影响这个变化的是x前面的系数k的符号:当k为正数时,y随x的增大而增大;当k为负数时,y随x的增大而减小。

师:当k0时,一次函数的图象经过哪些象限?

当k0时,一次函数的图象经过哪些象限?

相关推荐

热门文档

20 3093185