首页 > 学习资料 > 教案大全 >

数学初二教案汇聚(精选10篇)

网友发表时间 3071127

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“数学初二教案汇聚(精选10篇)”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

数学初二教案【第一篇】

1、本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。

2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。

学情分析。

1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。

2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。

3、学生认知障碍点:根据问题信息写出一次函数的表达式。

教学目标。

1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。

2、能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。

3、经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。

教学重点和难点。

1、一次函数、正比例函数的概念及关系。

2、会根据已知信息写出一次函数的表达式。

数学初二教案【第二篇】

当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。

数学初二教案【第三篇】

经历探索一次函数的应用问题,发展抽象思维.。

培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值.。

1.重点:一次函数的应用.。

2.难点:一次函数的应用.。

3.关键:从数形结合分析思路入手,提升应用思维.。

采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.。

y=。

拓展:若a城有肥料300吨,b城有肥料200吨,其他条件不变,又应怎样调运?

课本p119练习.。

由学生自我评价本节课的表现.。

课本p120习题14.2第9,10,11题.。

数学初二教案【第四篇】

2、过程与方法。

使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解、

3、情感、态度与价值观。

重、难点与关键。

1、重点:掌握用提公因式法把多项式分解因式、

2、难点:正确地确定多项式的公因式、

教学方法。

采用“启发式”教学方法、

教学过程。

数学初二教案【第五篇】

(一)、知识与技能:

(1)使学生了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

(二)、过程与方法:

(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。

(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。

(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。

(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

二、教学重点和难点。

重点:因式分解的概念及提公因式法。

难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。

三、教学过程。

教学环节:

活动1:复习引入。

看谁算得快:用简便方法计算:

(1)7/9×13-7/9×6+7/9×2=;。

(2)-×132+25×+7×=;。

(3)992–1=。

设计意图:

如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.

注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。

活动2:导入课题。

p165的探究(略);。

2.看谁想得快:993–99能被哪些数整除?你是怎么得出来的?

设计意图:

引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。

活动3:探究新知。

看谁算得准:

计算下列式子:

(1)3x(x-1)=;。

(2)(a+b+c)=;。

(3)(+4)(-4)=;。

(4)(-3)2=;。

(5)a(a+1)(a-1)=;。

根据上面的算式填空:

(1)a+b+c=;。

(2)3x2-3x=;。

(3)2-16=;。

(4)a3-a=;。

(5)2-6+9=。

在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。

活动4:归纳、得出新知。

比较以下两种运算的联系与区别:

a(a+1)(a-1)=a3-a。

a3-a=a(a+1)(a-1)。

在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?

数学初二教案【第六篇】

1、学生的认知基础:学生已学过三角形的内角和定理,以及三角形的边、顶点、内角等概念,并且已初步了解四边形可分成两个三角形来求内角和,这为本节课的学习打下了基础。因而学生在探索多边形内角和时,便会很容易想到“拼”和“量”和把多边形转化成三角形等方法。另外,在以往的学习中,学生的动手实践、自主探索及合作探究能力都得到一定的训练,本节将进一步培养学生这些方面的能力。

2、学生的年龄心理特点:八年级的学生具有很强的感性认知基础,对一些具体的实践活动十分感兴趣。活泼好动,思维敏捷,表现欲强,但思考问题不全面。

二、教学目标。

1、知识与技能目标:

(1)理解多边形及正多边形的定义。

(2)掌握多边形内角和公式。

2、过程与方法目标:

(1)掌握类比归纳、转化的学习方法;。

(2)培养学生说理和简单推理的意识及能力。

3、情感、态度与价值观目标:

让学生经历探索多边形内角和的过程,进一步发展学生的合情推理意识、主动探究的学习习惯;通过实际情景的引入,让学生进一步体会数学与现实生活的紧密联系。

三、教学重、难点。

教学重点:(1)多边形内角和公式。

(2)计算多边形的内角和及依据内角和确定多边形边数。

教学难点:多边形内角和公式的推导。

四、方法和手段:

方法:综合运用自主探究、合作交流、问题解决及研究式学习等方法。

手段:本节课采用多媒体与学科教学整和,以增大课堂信息量,加强直观性及趣味性,有利于学生观察、探究能力的提高。

五、教具、学具。

多媒体课件、三角板。

六、教学过程。

教师活动学生活动。

教学说明。

(一)创设情境。

1、在现实生活中,蕴含着丰富的几何图形。

2、观察图片找学过的几何图形?

(二)多边形的概念。

1、那么什么样的图形是三角形呢?怎样的图形叫做四边形呢?

3、多边形的相关概念:多边形的对角线、边、顶点、内角、内角和等。

教师边画图边说明。

4、凸多边形和凹多边形的概念。

(三)探究活动:公式的推导。

1、提出问题。

(1)、我们学过的三角形的内角和是多少呢?

(2)、那么四边形的内角和又是多少呢?你是怎么得到的?

(3)、那么五边形、常见的六边形。

的螺帽的内角和有没有计算方法呢?

今天我们就来探索多边形的内角和(板书课题)。

2、动手操作实践,自己探索。

归纳为以下几种方法:

方法1、过四边形的一个顶点连对角线,把四边形分割成两个三角形。

方法2、过四边形内任意一点与四边形的各顶点连结,把四边形分成三角形。

方法3、在四边形的任一边上取一点,与不相邻的各顶点连结,把四边形分成四个三角形。

方法4、在四边形外任取一点,把这点与各顶点连结。

3、观察、寻找规律。

五、六、七边形内角和之间有何规律?

3、猜想。

那么对于n边形猜想一下内角和计算公式是什么?

4、验证。

就我们已求出的特殊多边形的内角和,通过公式再求一次是否相符?

5、小结归纳。

(四)课堂练习。

1、求12边形的内角和度数。

2、如果n边形的内角和为1080°,求这个多边形的边数。

3、从一个多边形一个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是__________边形,它的内角和是____________________.

(五)正多边形的概念。

1、正多边形的概念:

(1)、一个多边形的每一个内角都相等,它的边一定相等吗?

(2)、一个多边形的边相等,它的内角一定相等吗?

(3)正多边形的概念:在平面内,内角都相等,边也都相等的多边形叫做正多边形。

2、巩固练习。

(1)正三角形、正四边形、正五边形、正六边形的内角分别是多少度?

(2)正多边形在自然界中也常见,如蜜蜂的蜂房就是一个正六边形的形状,

(五)课堂小结。

今天你学到了什么知识?要求用自己的话说出来?

(六)课外作业:

教科书第110页习题1、2、3。

让学生说说自己的想法。

学生通过观察发现:

三角形、四边形、五边形。

由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

在平面内,由不在同一直线上的四条线段首尾顺次相接所组成的图形叫做四边形。

三角形的内角和为180°。

四边形的内角和为360°。

学生口述得到四边形内角和为360°的方法。

1、正方形、矩形的内角和为4×90°。

一般的四边形呢?

学生思考、讨论得到解法。

完成表格。

学生分组根据自己所找到的求四边形的内角和度数的方法,分别求出五边形、六边形、七边形的内角和,并归纳得出:

n边形的内角和的计算公式:。

(n-2)·180°。

让学生独立完成。

不一定,如矩形。

不一定,如菱形。

等边三角形、正方形。

1、多边形内角和公式。

2、探索多边形内角和公式的方法。

从现实生活中引入,让学生感受生活中处处有数学。(通过课件展示图片,让学生直观感受。)。

学生利用三角形、四边形的定义进行知识的迁移,获得多边形的概念。

学生自己动手画图,有助于帮助理解概念。

从学生感兴趣的问题出发,设置悬念,引入课题。

要给学生一定的思考、交流的时间,鼓励学生大胆的发言,寻找多种方法求得五边形内角和的度数。(利用在课件中设置触发器的方法,可以灵活的演示学生的分割方法。)。

鼓励学生大胆猜想、大胆发现。

通过类比、归纳,完成从特殊到一般的认识,体现数学认识的一般过程。

培养学生解决问题的能力,巩固对n边形的内角和公式的掌握:。

让学生理解一个多边形的边相等,但角并不一定相等;。

角相等,但边也并不。

一定相等。

巩固学生对n边形的内角和的公式的掌握,培养学生的解题能力:。

巩固推导公式的方法和多边形公式的掌握。

七、教学反思。

本节课从实际问题入手,在引课时出示了多幅日常生活用品和建筑的图片,加强了数学与实际生活的联系,让学生感到数学离自己很近,激发了学生的求知欲。创设了良好的教学氛围。其次注重让学生在学习活动中领悟数学思想方法。数学的思想方法比有限的数学知识更为重要。学生在探索多边形内角和的过程中先把五边形转化成三角形.进而求出内角和,这体现了由未知转化为已知的思想。特别是在课堂教学中适时的利用问题加以引导,使学生领会数学思想方法,真正理解和掌握数学的知识、技能,增强空间观念及数学思考能力培养,并获得数学活动经验。同时,恰当的使用课件扩大了课堂容量,使课堂教学的深度和广度都有所提高。课件的使用提高了课堂效率,为学生的探索讨论赢得了时间。同时也加大了练习量,有助于学生知识可巩固和提高。

整节课学生的情绪饱满,思维活跃,在教师适当的引导下,学生能够合作交流和自主探究,成功的利用四种方法探索出了多边形的内角和公式,较好的完成了本节课的教学目标。

数学初二教案【第七篇】

例1 某数的3倍减2等于某数与4的和,求某数、

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3、

答:某数为3、

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4、

解之,得x=3、

答:某数为3、

师生共同分析:

1、本题中给出的已知量和未知量各是什么?

2、已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得

x-15%x=42 500,

所以 x=50 000、

答:原来有 50 000千克面粉、

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

教师应指出:

(2)例2的解方程过程较为简捷,同学应注意模仿、

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(2)根据题意找出能够表示应用题全部含义的一个相等关系、(这是关键一步);

(4)求出所列方程的解;

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨、解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误、并严格规范书写格式)

解:设第一小组有x个学生,依题意,得

3x+9=5x-(5-4),

解这个方程: 2x=10,

所以 x=5、

其苹果数为 3× 5+9=24、

答:第一小组有5名同学,共摘苹果24个、

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程、

(设第一小组共摘了x个苹果,则依题意,得 )

3、某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数、

首先,让学生回答如下问题:

1、本节课学习了哪些内容?

2、列一元一次方程解应用题的方法和步骤是什么?

3、在运用上述方法和步骤时应注意什么?

依据学生的回答情况,教师总结如下:

(2)以上步骤同学应在理解的基础上记忆、

1、买3千克苹果,付出10元,找回3角4分、问每千克苹果多少钱?

2、用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

数学初二教案【第八篇】

1.了解分式的基本性质,掌握分式的约分和通分法则。掌握分式的四则运算。

2.会用待定系数法求反比例函数的解析式,能利用函数性质分析和解决一些简单的实际问题。

3.体验勾股定理的探索过程,会运用勾股定理解决简单问题。会运用勾股定理的逆定理判定直角三角形。

4.探索并掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和常用判定方法,并运用这些知识进行有关的证明和计算。

5.进一步理解平均数、中位数和众数等统计量的统计意义,会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。

过程与方法

进一步培养学生的合情推理能力和发展学生逻辑思维能力和推理论证的表达能力;解决一些实际问题,体会化归思想和函数的变化与对应的思想;养成用数据说话的习惯和实事求是的科学态度;培养学生的探究能力、数学归纳能力,在活动中培养学生的合作交流能力;逐步形成独立思考,主动探索的习惯。

情感、态度与价值观

丰富学生从事数学活动的经验和体验,通过对问题的共同探讨,培养学生的协作精神,通过对知识方法的总结,培养反思的习惯,和理性思维。培养学生面对教学活动中的困难,能通过合作交流解决遇到的困难。

数学初二教案【第九篇】

(2)重点、难点分析。

本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.

本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

2、教法建议。

本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:

(1)参与探索发现,领略知识形成过程。

学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点p,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.

(2)采用“类比”的学习方法,获取逆定理。

线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.

(3)通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.

数学初二教案【第十篇】

总课时:7课时使用人:

备课时间:第八周上课时间:第十周。

第4课时:5、2平面直角坐标系(2)。

教学目标。

知识与技能。

1.在给定的直角坐标系下,会根据坐标描出点的位置;。

2.通过找点、连线、观察,确定图形的大致形状的问题,能进一步掌握平面直角坐标系的基本内容。

过程与方法。

2.通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识。

情感态度与价值观。

通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,提高学生学习数学的兴趣。

教学重点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。

教学难点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。

教学过程。

第一环节感受生活中的情境,导入新课(10分钟,学生自己绘图找点)。

在上节课中我们学习了平面直角坐标系的定义,以及横轴、纵轴、点的坐标的定义,练习了在平面直角坐标系中由点找坐标,还探讨了横坐标或纵坐标相同的点的连线与坐标轴的关系,坐标轴上点的坐标有什么特点。

练习:指出下列各点以及所在象限或坐标轴:

a(-1,-),b(3,-4),c(,5),d(3,6),e(-,0),f(0,),g(0,0)(抽取学生作答)。

由点找坐标是已知点在直角坐标系中的位置,根据这点在方格纸上对应的x轴、y轴上的数字写出它的坐标,反过来,已知坐标,让你在直角坐标系中找点,你能找到吗?这就是本节课的内容。

第二环节分类讨论,探索新知.(15分钟,小组讨论,全班交流)。

1.请同学们拿出准备好的方格纸,自己建立平面直角坐标系,然后按照我给出的坐标,在直角坐标系中描点,并依次用线段连接起来。

(-9,3),(-9,0),(-3,0),(-3,3)。

(学生操作完毕后)。

2.(出示投影)还是在这个平面直角坐标系中,描出下列各组内的点用线段依次连接起来。

(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);。

(4)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

观察所得的图形,你觉得它像什么?

(出示学生的作品)画出是这样的吗?这幅图画很美,你们觉得它像什么?

这个图形像一栋房子旁边还有一棵大树。

3.做一做。

(出示投影)。

在书上已建立的直角坐标系画,要求每位同学独立完成。

(学生描点、画图)。

(拿出一位做对的学生的作品投影)。

你们观察所得的图形和它是否一样?若一样,你能判断出它像什么呢?

(像猫脸)。

第三环节学有所用.(10分钟,先独立完成,后小组讨论)。

(补充)1.在直角坐标系中描出下列各点,并将各组内的点用线段顺次连接起来。

(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);。

(2)(0,0),(4,-3),(8,0),(4,3),(0,0);。

(3)(2,0)。

观察所得的图形,你觉得它像什么?(像移动的菱形)。

2.在直角坐标系中,设法找到若干个点使得连接各点所得的封闭图形是如下图所示的十字。

先独立完成,然后小组讨论是否正确。

第四环节感悟与收获(5分钟,学生总结,全班交流)。

本节课在复习上节课的基础上,通过找点、连线、观察,确定图形的大致形状,进一步掌握平面直角坐标系的基本内容。

在例题和练习中,我们画出了不少美丽的图形,自己设计一些图形,并把图形放在直角坐标系下,写出点的坐标。

第五环节布置作业。

习题5、4。

a组(优等生)1、2、3。

b组(中等生)1、2。

c组(后三分之一生)1、2。

相关推荐

热门文档

20 3071127