首页 > 学习资料 > 教案大全 >

《众数》数学教案(精编5篇)

网友发表时间 27986

发表时间

【前言导读】这篇优秀教案“《众数》数学教案(精编5篇)”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

中位数与众数1

一、教学内容:

《实验教材·数学》五年级上册第107-109页。

二、教学目标:

1、 知识与技能:在现实背景中,理解并体会中位数和众数的意义;会求中位数与众数。

2、过程与方法:

(1)体会“平均数”“中位数”和“众数”各自的特点;

(2)根据现实生活中具体的情况,选择适当的统计量表示数据的不同特征。

3、 情感、态度、价值观:培养学生具体问题具体分析的能力;体会数学服务于生活。

三、教学重点:

1、结合情境理解并体会中位数和众数的意义;

2、对统计量的选择能力。

四、教学难点:

1、根据具体问题情境选择适当的统计量表示数据的集中趋势。

2、根据统计量进行简单的预测或作出决策。

五、教学过程:

(一)认识众数:

小马在网上看到一则招聘广告:

招聘广告:

我公司现招聘员工,员工的月平均工资是3000元。(谁来读一读?)

小马觉得待遇不错,就应聘到了这家公司。一个月后,他拿到了工资但却产生了疑问(投影)什么疑问?他找到主管,质疑招聘广告内容有假,这时,人家给他拿出了这个月员工的工资表,并很自信的告诉他招聘广告内容是真实的。

小马拿过工资表就赶紧算,算什么?怎么求月平均工资?

(板书:平均数:总量÷总份数)咱们快帮小马算算吧。

果真是3000元,看来招聘广告内容不假,小马怎么会对招聘广告真实性有质疑呢?

招聘广告怎么改才不至于使应聘者产生这样的误会?为什么用1500元?

在统计学中把这样的数起叫众数(板书:众数)你怎样确定一组数中的众数呢?一组数据中出现次数最多的那个数。板书:(最多)

出示老师踢毽照片:

第一组:

教师

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

个数

9

9

8

6

2

9

7

4

9

第二组

教师

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

个数

7

10

7

11

7

9

7

10

7

5

两组教师踢毽个数的平均数、众数分别是多少?

在统计学里还经常用到另一个数:中位数。板书:中位数

位是位置的位,你认为第一组教师踢毽个数的中位数是几?

个数

9

9

8

6

2

9

7

4

9

排序:从小到大或从大到小,居中的那个数。

小组合作找出第一组教师踢毽个数的中位数,用实投汇报。(引导划数法)

用划数法找到第二组教师踢毽个数的平均数。

讨论:怎么找?为什么?

二、练习:

这是一组教师在规定时间内跳绳个数记录:

34、40、36、39、40、34、38

这一共有七个数据,师:、众数是多少?中位数?

这时发现漏记了一个成绩,加上这个成绩从大到小排列后是:

40、40、39、38、36、X、34、34

师:现在这组数据,中位数是?平均数是谁?

师:那中位数是谁?

小结:中位数只和一组按大小顺序排列数据的中间位置上数据有关,如果单数个数据就是最中间的那个,要是双数个数据,就是最中间两个数的平均数而平均数与数据中的每一个都息息相关。

平均数说明的是整体的平均水平;众数说明的是数据中的多数情况;中位数说明的是数据中的中等水平。

2、综合应用

1、射击队准备从两名运动员中选一名去参加射击比赛,下面是他们的选拔成绩(单位:环):

甲:、、、、、

乙、、、、、、

给出平均数后问:你认为应选谁去?为什么?

2、五(3)班准备在两名女生中选一名参加投篮比赛,下面是她们8次投篮的成绩记录(单位:个)

甲:6、7、5、8、6、6、5、9

乙:3、7、5、7、4、8、3、7

平均数 中位数 众数

甲: 6 6

乙: 6 7

3、五(3)班一次数学调研测试的成绩,如下表(单位:分)。

100

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

95

94

94

93

92

91

91

91

90

88

88

87

85

85

85

84

83

80

75

70

63

仔细观察这次测验成绩,说说发现了什么?

政府的听证会的目的。

谈收获。

《众数》数学教案2

教学目标

1、使学生理解众数的意义和作用,会找一组数据的众数。

2、能根据数据的具体情况,选择适当的统计量表示数据的不同特征,培养学生独立思考、合作的能力。

3、初步体会平均数、中位数、众数的区别。

4、体会众数在生活中的广泛应用,培养学生的学习兴趣。

教学重难点

教学重点:理解众数的意义和作用。

教学难点:初步体会平均数、中位数、众数的区别,能针对不同情境正确选择统计量表示。

教学工具

课件

教学过程

一、创设情境,认识众数

师:同学们,在上数学课之前,老师想了解你们填写成语的能力,大家想一想表现给老师看看。请看屏幕:( )所周知万( )一心( )志成城

师:三个成语都有一个相同的字,那就是“众”

“众”的含义是什么?(是大多数的意思)

师:同学们的语文基础知识还挺扎实的,这节课我们所学的内容就跟“众”字有关。

师:同学们,在上新课之前老师有个小小的要求,就是同学们手上的计算器在还没用到之前我们先不去碰它,能做得到吗?

师:同学们,你们每个人都喜欢体育运动吗?

生:喜欢。

师:喜欢体育运动是一件非常好的事。因为它能让人强身健体。

老师发现,我们很多学生特别喜欢打篮球,而且他们的球技也不错,老师这儿有一组学生的投篮练习成绩,请看屏幕:

10个学生每个学生投10个球,练习成绩如下:单位(个)

5 5 6 1 5 2 5 5 5 5

你们能同桌合作,算出这组数据的平均数和中位数吗?

平均数是:4.中位数是: 5

师:你们是怎样算出平均数呢?

生:把一组数据的所有数加起来再除以个数,就得到。师:大家也是这样算吗?

师:这么说平均数和一组数据的所有数都关系,反映是的一组数据的整体水平。(板书:平均数整体水平和所有数据有关)

师:中位数呢,你们又是怎么求?

生:(5+5)÷2=5

师:说得真好,大家也是这样求吗?你们在求出中位数前,是先怎样整理这组数据?

生:按大小排列顺序。

师:这么说中位数和数据的排列位置有关,因为中位数处于一组数据的中间位置,所以它反映的是这组数据的什么水平?它不受偏大或偏小数据的影响。(中等水平或一般水平)(板书:中位数一般水平或(中等水平)和数据的排列位置有关)

师;你认为用哪种统计量表示这组数据的水平比较合适?知道是为什么吗?

(生:用中位数5表示这组数据的的成绩比较合适,因为大部分同学投篮的个数集中在5个。而平均数4。4明显地比大部分数据小,因为受到偏小数1和2的影响。在这组数据中偏低了。)

4、课件出示观察这组数据,认识众数。

师:刚才我们一起回忆了平均数,中位数的知识。在统计中平均数,中位数能够反映一组数据的状况。除了它们,还有一个数也能表示这组数据的情况。你们想知道它是谁吗?

师:现在我们再看这组投篮数据,请同学们仔细观察,这组数据有什么特点?哪个数据最特殊?出现了多少次?(5出现的次数最多)

师:你们的眼睛真明亮,5出现的次数超过了整组数据的一半,也就是说投下5个球的人数最多。

师:同学们,像这样,在这一组数据中出现次数最多的数,我们就把它叫做这组数据的众数。这就是这节课我们学习的内容。(板书:众数)

根据你们的理解,你们认为“众数”这两个字,(板书:众数)哪个字最关键。众是什么意思呢?还记得吗?(板书:出现的次数最多。)

师:同学们,5就是这组数据的众数,因为在这一组数据中它出现的次数最多,众数5也可以反映这组数据的水平?它反映是的什么水平呢?

师:在家看看,这组同学投篮的个数集中在中哪个数?(5)所以我们说众数5反映了同学们投篮成绩的集中水平?(板书:集中水平)它受到偏大或偏小数据的影响吗?

师:下面让我们继续在生活中了解众数吧!

二、依据情境,理解众数

1、选演员

师:同学们,还有一个多月“六。一”儿童节就要到了,我相信大家一定很期盼这一天的到来。五(3)班的同学为了庆祝“六。一”儿童节,要选10名同学组成一个舞蹈队。如果你是舞蹈老师那么你觉得在选择舞蹈队员时,一般应该考虑到哪些问题?(学生回答)

(1)(课件出示)师下面是20名舞姿比较好的侯选队员的身高情况(单位:米)

根据以上数据,要从中选出10名同学组成舞蹈队,你认为舞蹈队员的身高是多少比较合适?你能试着帮老师选一选吗?请看大屏幕的要求:

(2)同桌合作探究要求:

1、先仔细观察这一组数据,看看有什么特点?并同桌合作用计算器算出平均数,中位数,找出众数。填在学习卡上。

2、同桌合作,从中选出你们认为比较合适的10名同学的身高,填在学习卡上。

3、你选择的依据是什么?

(3)汇报交流。师:现在哪一桌来说说你的答案。生:回答。

(4)做出决策

师:通过刚才的汇报交流,你觉得应该根据平均数,中位数、众数这三个统计量中的哪一个来选队员的身高好?(师:为什么你们都不根据平均数,中位数来选择舞蹈队员呢?)生:答。

师:的确你们说的那样。请看屏幕:

课件出示:

ⅰ平均数()

①按照平均数,这些队员身高是多少比较合适?

②哪十名队员的身高在左右?

ⅲ众数()

哪十名队员的。身高在左右?

师:同学们,你选出来的队员身高的确是最标准的不知同学们是否发现,刚才你们所选舞蹈队员的身高就是按哪个统计量来选的?(众数5)。按照众数来选队员,身高基本一样,很匀称,整个舞蹈队形让人感到很整齐、很美观!

(过渡:从这一个例子可以看出来,除了平均数、中位数、众数在我们的生活中也同样有重要的作用。)

2、1分钟跳绳比赛

学校举行1分钟跳绳比赛,五(1)班、五(2)班、五(3)班8名参赛选手的成绩如下,请分别找出这三组数据的众数。

五(1)班:120 150 105 150 150 186 150 150 ( )

五(2)班:183 108 183 216 196 183 216 216 ( )

五(1班:126 157 169 200 198 224 115 215 ( )

师:在找这三组数据的众数的过程中,你发现了什么?

板书:在一组数据中,众数可能不止一个,也可能没有众数。(不唯一,可能没有)

三、联系情境,应用众数

师:看来同学们对众数有了一定的了解,现在请你

1、给鞋店经理当参谋

红蜻蜓鞋店在一段时间内销售了某种女鞋30双,其中各种尺码的销售情况如下:

尺码

34 35 36 33 38 39 40

(1)如果你是鞋店的经理,你会关心哪个数据?(从中你有什么发现)

(2)你对鞋店的经理有什么建议?

(过渡:商品的销售也要用到众数的知识。由此看来,生活中真少不了众数呀!除了这些,生活中还有很多事例用到众数知识,只要你是生活的有心人,就会发现。)

综合练习。

师:同学们,到现在为止,我们已经认识了平均数、中位数、众数三个统计量,你们能试着用它们来解决一些问题吗?请继续看题。(课件出示)

2、判断。对的打“√”,错的打“×”。

(1)、如果一组数据的众数是7,那么这组数据中出现次数最多的是7。( )

(2)、一组数据的平均数一定大于众数。( )

(3)、一组数据的平均数、中位数、众数可能相同。( )

(4)、众数能够反映一组数据的集中情况。( )

结束语:同学们,到现在我们已经认识了平均数,中位数,众数三个统计量,那么你们对它们有多少了解呢?也就是说你懂得了平均数、中位数、众数的哪些知识。

3、请同学们分析判断,看看使用平均数、中位数、众数中哪一个统计量比较合适。

(1)调查同学们最喜欢的动画片。

( )

(2)五(1)班有50人,五(2)班有45人,

比较两个班的数学成绩。( )

(3)在学校演讲比赛中,小红想知道自己处于中位数

什么水平。( )

(4)面包店老板想知道哪种面包销售最好。

( )

师:像这样的情况还有很多很多,在实际问题中,我们要学会根据题目中的要求和具体的问题灵活选择。

四、平均数、中位数、众数的区别和联系。

(过渡:通过刚才的学习,我们对平均数、中位数、众数有一定的认识,那它们有什么区别与联系呢?你们能说说吗?可能结合老师的板书说说)看来这节课同学们的收获可真不少。

众数和我们前面学过的平均数、中位数,一样,也是反映一组数据集中趋势的一个统计量。但这三量描述的角度和适用范围有所不同。综合大家的意见,老师总结如下,请看屏幕。(课件出示):

平均数:平均数是应用最广泛,用它作为一组数据的代表,比较可靠和稳定,能够反映一组数据整体水平。因为它与一组数据的每一个数都有关系,所以受组内偏大或偏小数据的影响。

中位数:中位数在一组数据的排序中处于中间的位置,在统计学分析中常扮演着“分水岭”角色。它不受偏大或偏小数据的影响,能较好的反映一组数据的一般水平,但它也有美中不足,需要对所有数据按一定的顺序进行排列才能找出。

众数:众数是对各数据出现的次数的考察,它也不受偏大或偏小数据的影响,能够较好地反映一组数据的集中情况。众数能给我们解决问题带来更大的方便。

师:课下,同学们运用我们这节课所学的知识完成最第4题的练习。

五、课堂小结

(1)今天这节课大家学得开心吗?知道大家学得开心,老师就放心了。这节课我们就上到这里,下课。

课后习题

完成课后练习题。

中位数与众数3

复习内容:复习简单的统计,教材第140页第11题,第143、144页第13、14题

复习目标:

1、使学生进一步理解众数的含义及其在统计学上的意义,并深入理解众数、平均数和中位数在表示一组数据时的不同之处。

2、认识复式折线统计图,充分了解其优点及绘制方法,并能对数据进行简单的分析和预测。

复习过程:

一、复习相关内容。

同学们回忆一下这部分我们主要学习了什么?

问:众数、平均数和中位数在表示一组数据时有什么不同之处?

复式折线统计图的优点是什么?(既可以看出每组数据变化的整体趋势,还能对每组数据的差异进行分析、比较,并通过所获得的信息对事物的发展进行推测。)

二、巩固练习

1、教材143页第13题。

独立完成第(1)题,总结众数、平均数、中位数的区别。

用哪个数表示两个班的成绩更合适?说一说你的理由。

注意:跑相同的路程,用的时间越少,跑得反而越快。

2、教材140页第11题

师介绍:“学龄儿童”是指6~12岁进入义务教育初级阶段的孩子。

学生独立完成前两个小题,指名回答,集体订正。

总结复式折线统计图与单式折线统计图的区别(可以方便地看出学龄儿童人数与入学儿童人数在每一年的差的变化趋势……)

3、教材第144页第14题

提示:这个题目还涉及到分数,做题时注意分数的应用。

学生先独立完成,再集体讨论交流,订正。

请学生根据图上的停息预测20xx年年人均支出和年人均食品支出的趋势。

三、思考题(教材143页思考题)

大家试一试,看自己能不能解决。可以先用卡片摆一摆,再找规律。

有什么规律?要组成偶数,个位数有什么特点?(只能把2或4这两张卡片放在个位)

当2放在个位上时,组成的两位数有3个,12、32、42。当4放在个位上时,组成的两位数又有哪些呢?

四、全课总结(略)

教学反思:

本课建议补充数学广角——找次品,这样才能完整复习本册所有单元。

本学期自己教学困惑最多的一个单元就是统计与找次品。主要有以下几方面:

一、知识方面

1、根据数据特点,无法确定合适的统计量。相关内容见 http:///第269层。请教区教研员后的结论是:选派射击选手在平均成绩相同的条件下,应选发挥更稳定的选手参赛。众数不仅要观察数据的大小,同时还要比较众数出现的次数。在此题中,甲的众数是,它出现了5次;乙的众数是10,可这个数据只出现了2次,而且在这组数据中还出现了明显偏小的数据和,所以,综合考虑上述情况应选派甲去参加比赛更合适。

2、“你认为用哪一个数据(或数)代表****的一般水平比较合适,”这里是回答数值,还是回答“中位数”、“平均数”或“众数”呢?

教材123页做一做第3小题、125页第5题(2)小题的问题都是用哪一个“数据”代表一般水平比较合适。而143页第13题(2)小题问题是用哪一个“数”表示两个班的成绩更合适。这两者之间有区别吗?

《教参》对123页做一做第3小题是这样回答的:“在这里用众数表示全班同学的平均视力水平比较合适。”125页第5题(2)小题是这样回答的:“由于平均数是2600,中位数和众数都是20xx,所以用众数代表这个公司员工工资的一般水平比较合适,因为它反映的是大多数人的工资水平。”难道这里回答用“中位数”代表这个公司员工工资的一般水平就不对了吗?

查阅《现代汉语词典》 “数据”是指进行各种统计、计量、科学研究或技术设计等所依据的数值。“数”是指数目,数目是指通过单位表现出来的事物的多少。按这两个词语的意思来理解,学生应该回答用多少来表示一般水平比较合适才正确。

请问广大网友,你们是如何要求学生回答上上述问题的?

二、评价方面:

数学习题的批改长期是统一标答,对就是对,错就是错,即使有多种解法,也往往是同一种结果,少有多种答案。但随着课程改革的推进,我发现教材的许多问题使学生们个性张扬,思维活跃,结果丰富多彩。对于初次接触新课标教材的我而言,确实感觉极不适应,在评价时也常常感觉把握不准标高。

如“从统计图中,你还能得到哪些数学信息”,如果学生是根据统计图,自己预测未来的发展变化趋势,这能算对吗?

又如“你能预测两个人的比赛成绩吗(教材128页做一做第3小题)”,有的同学是预测的具体次数(李欣会跳169下,刘云会跳163下),有的学生预测的是名次(李欣会得第一名,刘云可能得不到名次),有的学生是将两个的情况进行对比(李欣的比赛成绩会超过刘云)。这些都应该算对吧?

还有这种类型:“如果你是商场经理,下面的统计图对你有什么帮助?”学生有的回答“前4个月我多进彩电,后4个月我多进洗衣机,中间几个多两种电器都适当购进。”也有的学生回答,“从发展趋势来看,彩电越买越少,洗衣机销量越来越大,所以我会多进洗衣机,少进彩电。”这两种回答又该如何评价呢?

中位数与众数4

教学目标:

1、通过对数据的分析,会求中位数与众数,并能根据具体问题解释其实际意义。

2、 在发现问题、分析问题和解决问题的具体活动过程中培养学生探究意识和合作能力。

3、感受统计在生活中的应用,增强统计意识,养成严谨的科学态度和大胆探索创新的良好品质。

重点:会求中位数与众数,能结合情境理解这两个统计量的意义。

难点:能根据具体情境选择适当的统计量表示数的不同特征。

教学过程:

一、问题引入──骗人的平均数

教学活动一:师[课件演示]考考你:某次数学考试,婷婷得到78分。全班共30人,其他同学的成绩为1个100分,4个90分,22个80分,以及1个2分和1个10分。婷婷计算出全班的平均分为77分,所以婷婷告诉妈妈说,自己这次成绩在班上处于“中上水平”。

问题:婷婷的说法合理吗?为什么?

生(思考后)回答:合理。

师:请想一想,为什么合理?

生:因为婷婷的成绩78分高于全班的平均分77分。

师:引导:在班上30名学生中,少于78分的有多少?

生:有两个,1个2分和1个10分。

⑴ 将学生成绩按从高到底的顺序排列,30名学生中处于中间位置的是什么位置?处于中间位置的学生考试分数是多少分?假如要你要给他的考试分数(数据)命名,你会如何命名?并给它下定义?

⑵ 30名学生的考试分数中,哪一个分数出现的次数最多。假如要你给这个出现次数最多的分数命名,你又如何命名?并给它下定义?

生:情绪非常兴奋,思维非常活跃。按老师要求进行排序、探究、讨论、解决上述三个问题。

师:巡视课堂,参与到学生的学习探究活动之中,与学生一起研究、讨论并指导部分学生的学习。

师:通过将30名学生成绩从低分到高分排序,处于中间位置的是什么位置? 生:处于中间位置的是15、16。

师:位置在15、16的学生的考试分数是多少?

生:都是80分。

师:根据以前学过的知识,你如何命名?

生:可命名为:中位数。

师:怎样定义中位数?

生:在一组数据中出现次数最多的数是众数。将一组数据按大小顺序排列,把处在中间的一个数(或两个数的平均数)叫这组数据的中位数。

师:为什么要补充中间两个数的平均数。

生:因为数据个数可能是偶数

师:在学生的考试分数中,哪一个分数出现的次数最多?你又如何给这个分数命名?

生:80分出现的次数最多,可命名为众数。

师:怎样定义众数?

生:在一组数据中出现次数最多的数是众数。

2、理性解读──认识本质特征

教学活动三:(分小组活动)

师:请同学们在反思活动二的基础上仔细阅读课本中对中位数、众数的定义,并将定义中的关键词找出来,指出定义的本质特征。解决下面问题[课件演示]:

⑴理解中位数概念:

①中位数的意义是什么?

②定义中为什么要分数据的个数是奇数和偶数?

③求中位数:首先应该做什么工作?然后做什么?特殊情况如何处理? ⑵解读众数概念:

①众数的意义是什么?

②求众数要注意观察什么?

生:细读、思考、找出定义中的关键词并与同组同学讨论交流。

师:抽查活动结果,并要求每个学习小组选代表汇报本组学习结果。

组1:我们对中位数概念的理解是:

生1:①中位数的意义是:一组数据按顺序排列后中间位置上的数值。

生2:补充:强调顺序、位置关系。

生3:任何一组数据的个数有奇数个和偶数个两种可能。

生4:求中位数,首先是将数据从大到小(或从小到大)排序,然后确定数据个数的奇偶性;当数据个数是奇数个时,则处于中间位置的数称为这组数据的中位数,当数据个数是偶数个时,求中间两个数据的平均数。

组2:众数概念的理解是:

生1:众数的意义是:在一组数据中出现次数最多的数是众数。

生2:补充:众数只和一个数据出现的次数有关,与位置无关。

三、巩固新知──解决实际问题

1、运用新知──树立学习信心

练习 [课件演示]:求下列数据的平均数、中位数和众数。

⑴ 1 2 2 2 3

⑵ 5 3 2 3 2

⑶ 3 -2 5 9 -1 4

生:独立练习。

师:提问、讲评。

生1:数据⑴:平均数是2;中位数是2;众数是2。

生2:数据⑵:平均数是3;中位数是2,众数是2和3。

生3:不对。不对,中位数不是2。

师:为什么?

生3:没有排序。要先排序为:2、2、3、3、5,所以中位数是3。

生4:数据⑶:平均数是3;中位数是;没有众数。

师:观察上面的解题结果,你发现了什么?

《众数》数学教案5

“平均数、中位数和众数(第二课时)”的说课

(使用教材:义务教育课程标准试验教科书《数学》(华师大版)七年级下册第10章第2节,第97~104页)

一。 教材分析

1、教材的地位和作用

在信息社会“数字”社会里,常常需要在不确定的情况下,根据大量纷繁杂芜的数据做出一个合理的决策,而统计正是通过对数据的收集、整理和分析,为人们更好地制定决策提供依据及建议,数学教案-平均数、中位数和众数(第二课时)]。平均数,众数,中位数是描述一组数据的集中趋势的3个统计特征量,是帮助学生学会用数据说话的基本概念。本节内容是继平均数学习之后的后续内容,既是对前

面所学知识的深化与拓展,又是联系现实生活培养学生应用数学意识和创新能力的良好素材。

2、课时安排和说明

参照新教材教师用书建议:“10.2平均数、中位数和众数”这一节准备安排三个课时,第一课时主要承上启下地回顾探索平均数的一些性质及简单应用。第二课时探索得到众数和中位数的概念,并会正确计算众数和中位数,了解平均数、众数和中位数的各自适用范围。 第三课时是练习实践课,目的是巩固和深化本节知识及会用计算器计算平均数,用计算机计算平均数、众数和中位数。本次说课内容为第二课时。

3、教学重点和难点

教学重点:众数和中位数两概念的形成过程及两概念的简单运用。

教学难点:利用收集的数据整理分析,对刚接触统计不久的学生来说,他们原有的认知结构中尚缺乏这方面的知识经验,因此,对统计数据从多角度进行全面分析,使学生形成一定的统计观念(即数据感)是教学难点。

二.学情分析

认知分析:学生已初步了解统计的意义,理解平均数的含义及会计算平均数,这两者形成了学生思维的“最近发展区”。

能力分析:学生已初步具备一定的归纳、猜想能力,但在数学的应用意识与应用能力方面尚需进一步培养。

情感分析:多数学生对数学学习有一定的兴趣能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生的学习主动性不够强,尚需通过营造一定的学习氛围,来加以带动。

基于以上分析,在学法上,引导学生采用自主探索与互相协作相结合的学习方式,尽量让每一个学生都能参与研究,并最终学会学习。

三.教学目标

根据教材分析和学生的认知特点,本节课设置的教学目标为:

知识目标:理解众数和中位数的含义,会正确计算众数和中位数。

能力目标:进一步发展学生类比、归纳、猜想等合情推理能力;让学生接触并解决一些现实生活中的问题,逐步培养学生的应用能力和创新意识。

情感目标:通过各种真实的,贴近学生生活的素材和适当的问题情境,激发学生学习数学的热情和兴趣;在合作学习中,学会交流,相互评价,提高学生的合作意识与能力。

四.教学方法

根据本节课的教学内容和建构主义教学理论,从发展学生认识问题、探索问题、研究问题的能力角度考虑,准备采用“以问题为中心”的讨论发观法:即课堂上,教师或学生提出适当的数学问题,通过学生与学生(或教师)之间相互讨论,相互学习,在问题解决过程中发现概念的产生过程,思想方法的概括过程从而逐步建立完善的认知结构。

具体说本节课由五个基本环节组成:创设情境,提出问题--合作交流,探索问题--理性概括,构建新知――实践应用,鼓励创新――归纳小结,反思提高。

五.教学过程

1. 创设情境,提出问题

(1) 创设情境(用多媒体课件演示)

某小厂欲招工人一名,小张应征而来,经理告诉他:“我们这里报酬不错,平均工资水平是每周300元,初中数学教案《数学教案-平均数、中位数和众数(第二课时)]》。”小张工作几天后,找到经理说:“你骗我,多数工人的工资水平没有超过每周200元,”这时,工会主席过来说:“小张,经理说得没错,其实我们厂有一半人达到或超过中等工资水平即每周250元,不止每周200元的!不信,看看这张工资表。”看后,小张感慨:“难道是我错了?”

(2) 问题:真是公说公有理,婆说婆有理,平均数真能客观反映工人的真实工资水平吗?

基于学生原有认知结构的问题情境,更诱发了学生的认知冲突,从而引发学生提出问题:究竟什么数据能反映工人的真实工资水平?

2. 合作交流,探索问题

在导出以上问题后,分三人小组开小型辩论会(三人分别充当经理、小张、工会主席三个角色展开辩论)。各小组再拿出最能反映工人真实工资水平的数据全班交流。

学生会用人数最多的工种的工资200元或中等水平工资250元来回答,从而引出:今天要学习的内容----众数和中位数。

通过学生合作交流,相互完善,在自主探索中发现概念的形成过程。让学生体验生活中的角色,认识到研究数据的必要性。

3.理性概括,构建新知

(!)启发建构

在上述数据中象“200”这样的数我们就叫做这组数据的众数,象“250” 这样的数我们就叫做这组数据的中位数,它们与其它几个数相比是不同的,有何不同?我们能用自己的语言来描述它们吗?在学生描述的基础上为加深印象,教师可适时补充说明:“众数”中“众”即多,也就是某个数据在一组数据中出现次数最多;而“中位数”中“中位”是指位置居于中间,即某个数据在按照大小顺序排列的一组数据中,位置处于最中间。形象语言的描述更易新知的构建。

(2)完善建构

练习:

① 在一次英语考试中,11名同学得分如下:80 70 100 60 80 70 90 50 80 70 90 请指出这次英语考试中,11名同学得分的中位数和众数。

② 10名工人某天生产同一零件,生产的。件数是:13 15 10 14 19 17 16 14 12

你能说出这一天10名工人所生产零件数的众数和中位数吗?

学生独立思考后讨论回答。

结合学生回答的实际情况,对练习追问:a、能说出1 2 3 4 5 6 的众数吗?b、如何求一组数据的中位数?c、在一组数据中平均数,众数和中位数会都是同一个数吗?d、实话实说,对平均数、众数和中位数知道多少?谈谈它们的区别和共同特点.

归纳探索结果:

众数、中位数都是用来描述一组数据的集中趋势。众数是一组数据中出现次数最多数据;一组数据中的众数可能不止一个,也可能没有。中位数是指:将一组数据按大小依次排列,处在最中间位置的一个数据(或最中间两个数的平均数),一组数据中的中位数是惟一的。

这一环节,由浅入深设置问题链,使学生思维分层递进,目的是突出本节重点;通过追问层层引导,又把学生的探索逐步引向最近发展区,启发学生运用类比、归纳、猜想等思维方法探究问题,揭示概念的实质,不断完善新的知识结构。同时体验了知识的形成过程和发现的快乐,继而转化为进一步探索的内驱力。

4.实践应用,鼓励创新

(!)请你当厂长

某鞋厂生产销售了一批女鞋30双,其中各种尺码的销售量如下表所示:

相关推荐

热门文档