高一数学教案精编5篇
【序言】由三一刀客最美丽的网友为您整理分享的“高一数学教案精编5篇”教学资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!
高中数学教案高1
一、教材分析
函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。
二、重难点分析
二、重难点的确定
根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。
三、学情分析
1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。
2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。
四、目标分析
1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。
2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。
3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。
五、教法学法
本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。
学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。
六、教学过程
(一)创设情景,引入新课
情景1:提供一张表格,把上次运动会得分前10的情况填入表格,我报名次,学生提供分数。
名次
1
2
3
4
5
6
7
8
9
10
得分
情景2:汽车的行驶速度为时过早80千米/小时,汽车行驶的距离y与行驶时间x之间的关系式为:y=80x
情景3:某市一天24小时内的气温变化图:(图略)
提问(1):这三个例子中都涉及到了几个变化的量?(两个)
提问(2):当其中一个变量取值确定后,另一个变量将如何?(它的值也随之唯一确定)
提问(3):这样的关系在初中称之为什么?(函数)引出课题
[设计意图]在创设本课开头情境1、2的时候,我并没有运用书中的前两个例子。第一个例子我改成提供给学生一张运动会成绩统计单。是为了创设和学生或者生活相近的情境,从而引起学生的兴趣,调节课堂气氛,引人入胜,第二个例子我改成一道简单的速度与时间问题,是因为学生对重力加速度的问题还不是很熟悉。同时这两个例子并没有改变课本用三个实例分别代表三种表示函数方法的意图。
这样学生可以从熟悉的情景引入,提高学生的参与程度。符合学生的认知特点。
(二)探索新知,形成概念
1、引导分析,探求特征
思考:如何用集合的语言来阐述上述三个问题的共同特征?
[设计意图]并不急着让学生回答此问,为引导学生改变思路,换个角度思考问题,进入本节课的重点。这里也是教师作为教学的引导者的体现,及时对学生进行指引。
提问(4):观察上述三问题,它们分别涉及到了哪些集合?(每个问题都涉及到了两个集合,具体略)
[设计意图]引导学生观察,培养观察问题,分析问题的能力。
提问(5):两个集合的元素之间具有怎样的关系?(对应)
及时给出单值对应的定义,并尝试用输入值,输出值的概念来表达这种对应。
2、抽象归纳,引出概念
提问(6):现在你能从集合角度说说这三个问题的共同点吗?
[设计意图]学生相互讨论,并回答,引出函数的概念。训练学生的归纳能力。
板书:函数的概念
上述一系列问题,始终在学生知识的“最近发展区”,倡导学生主动参与,通过不断探究、发现,在师生互动,生生互动中,在学生心情愉悦的氛围中,突破本节课的重点。
3、探求定义,提出注意
提问(7):你觉得这个定义中应注意哪些问题?
[设计意图]剖析概念,使学生抓住概念的本质,便于理解记忆。
2、例题剖析,强化概念
例1、判断下列对应是否为函数:
(1)
(2)
[设计意图]通过例1的教学,使学生体会单值对应关系在刻画函数概念中的核心作用。
例2、(1);
(2)y=x-1;
(3);
(4)
[设计意图]首先对求函数的定义域进行方法引导,偶次方根必需注意的地方,其次,通过(2)(3)两道题,强调只有对应法则与定义域相同的两个函数,才是相同的函数。而与函数用什么字母表示无关,进一步理解函数符号的本质内涵。
例3、试求下列函数的定义域与值域:
(1)
(2)
[设计意图]让学体会理解函数的三要素。
4、巩固练习,运用概念
书本练习P24:1,2,3,4
5、课堂小结,提升思想
引导学生进行回顾,使学生对本节课有一个整体把握,将对学生形成的知识系统产生积极的影响。
七、教学评价
1、我通过对一系列问题情景的设计,让学生在问题解决的过程中体验成功的乐趣,实现对本课重难点的突破。
2、为使课堂形式更加丰富,也可将某些问题改成判断题。
3、在学生分析、归纳、建构概念的过程中,可能会出现理解的偏差,教师应给予恰当的梳理
4。本节课的起始,可以借助于多媒体技术,为学生创设更理想的教学情景。
以上就是一秘范文为大家整理的5篇《高一数学教案》,希望对您的写作有所帮助。
高一数学教案2
教学目标
1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.
2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.
3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.
教学重点与难点
教学重点:函数单调性的概念.
教学难点:函数单调性的判定.
教学过程设计
一、引入新课
师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?
(用投影幻灯给出两组函数的图象.)
第一组:
第二组:
生:第一组函数,函数值y随x的增大而增大;第二组函数,函数值y随x的增大而减小.
师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当x变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.
(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)
二、对概念的分析
(板书课题:)
师:请同学们打开课本第51页,请××同学把增函数、减函数、单调区间的定义朗读一遍.
(学生朗读.)
师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量x的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?
生:我认为是一致的.定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少.
师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!
(通过教师的情绪感染学生,激发学生学习数学的兴趣.)
师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1(x)和y=f2(x)的图象,体会这种魅力.
(指图说明.)
师:图中y=f1(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f1(x1)<f1(x),因此y=f1(x)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1(x)的单调增区间;而图中y=f2(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f2(x1)>f2(x2),因此y=f2(x)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(x)的单调减区间.
(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)
师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应……
(不把话说完,指一名学生接着说完,让学生的思维始终跟着老师.)
生:较大的函数值的函数.
师:那么减函数呢?
生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数.
(学生可能回答得不完整,教师应指导他说完整.)
师:好.我们刚刚以增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义?
(学生思索.)
学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题,认识问题的能力.
(教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气.在学生感到无从下手时,给以适当的提示.)
生:我认为在定义中,有一个词“给定区间”是定义中的关键词语.
师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么?
生:不能.因为此时函数值是一个数.
师:对.函数在某一点,由于它的函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化.那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子?
生:不能.比如二次函数y=x2,在y轴左侧它是减函数,在y轴右侧它是增函数.因而我们不能说y=x2是增函数或是减函数.
(在学生回答问题时,教师板演函数y=x2的图像,从“形”上感知.)
师:好.他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”.这说明是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数.因此,今后我们在谈论函数的增减性时必须指明相应的区间.
师:还有没有其他的关键词语?
生:还有定义中的“属于这个区间的任意两个”和“都有”也是关键词语.
师:你答的很对.能解释一下为什么吗?
(学生不一定能答全,教师应给予必要的提示.)
师:“属于”是什么意思?
生:就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取.
师:如果是闭区间的话,能否取自区间端点?
生:可以.
师:那么“任意”和“都有”又如何理解?
生:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2).
师:能不能构造一个反例来说明“任意”呢?
(让学生思考片刻.)
生:可以构造一个反例.考察函数y=x2,在区间[-2,2]上,如果取两个特定的值x1=-2,x2=1,显然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的减函数,那就错了.
师:那么如何来说明“都有”呢?
生:y=x2在[-2,2]上,当x1=-2,x2=-1时,有f(x1)>f(x2);当x1=1,x2=2时,有f(x1)<f(x2),这时就不能说y=x2,在[-2,2]上是增函数或减函数.
师:好极了!通过分析定义和举反例,我们知道要判断函数y=f(x)在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定函数的增减性.
(教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解.在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力.)
师:反过来,如果我们已知f(x)在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小.即一般成立则特殊成立,反之,特殊成立,一般不一定成立.这恰是辩证法中一般和特殊的关系.
(用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的能力.)
三、概念的应用
例1图4所示的是定义在闭区间[-5,5]上的函数f(x)的图象,根据图象说出f(x)的单调区间,并回答:在每一个单调区间上,f(x)是增函数还是减函数?
(用投影幻灯给出图象.)
生甲:函数y=f(x)在区间[-5,-2],[1,3]上是减函数,因此[-5,-2],[1,3]是函数y=f(x)的单调减区间;在区间[-2,1],[3,5]上是增函数,因此[-2,1],[3,5]是函数y=f(x)的单调增区间.
生乙:我有一个问题,[-5,-2]是函数f(x)的单调减区间,那么,是否可认为(-5,-2)也是f(x)的单调减区间呢?
师:问得好.这说明你想的很仔细,思考问题很严谨.容易证明:若f(x)在[a,b]上单调(增或减),则f(x)在(a,b)上单调(增或减).反之不然,你能举出反例吗?一般来说.若f(x)在[a,(增或减).反之不然.
例2证明函数f(x)=3x+2在(-∞,+∞)上是增函数.
师:从函数图象上观察固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径.
(指出用定义证明的必要性.)
师:怎样用定义证明呢?请同学们思考后在笔记本上写出证明过程.
(教师巡视,并指定一名中等水平的学生在黑板上板演.学生可能会对如何比较f(x1)和f(x2)的大小关系感到无从入手,教师应给以启发.)
师:对于f(x1)和f(x2)我们如何比较它们的大小呢?我们知道对两个实数a,b,如果a>b,那么它们的差a-b就大于零;如果a=b,那么它们的差a—b就等于零;如果a<b,那么它们的差a-b就小于零,反之也成立.因此我们可由差的符号来决定两个数的大小关系.
生:(板演)设x1,x2是(-∞,+∞)上任意两个自变量,当x1<x2时,
f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,
所以f(x)是增函数.
师:他的证明思路是清楚的.一开始设x1,x2是(-∞,+∞)内任意两个自变量,并设x1<x2(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看f(x1)-f(x2),这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”).但美中不足的是他没能说明为什么f(x1)-f(x2)<0,没有用到开始的假设“x1<x2”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号.应写明“因为x1<x2,所以x1-x2<0,从而f(x1)-f(x2)<0,即f(x1)<f(x2).”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”).最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”).
这就是我们用定义证明函数增减性的四个步骤,请同学们记住.需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以小.
(对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势.在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的.)
调函数吗?并用定义证明你的结论.
师:你的结论是什么呢?
上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数.
生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2显然成立,而f(x1)<0,f(x2)>0,显然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定义域内的减函数.
生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数.
域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数.因此在函数的几个单调增(减)区间之间不要用符号“∪”连接.另外,x=0不是定义域中的元素,此时不要写成闭区间.
上是减函数.
(教师巡视.对学生证明中出现的问题给予点拔.可依据学生的问题,给出下面的提示:
(1)分式问题化简方法一般是通分.
(2)要说明三个代数式的符号:k,x1·x2,x2-x1.
要注意在不等式两边同乘以一个负数的时候,不等号方向要改变.
对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视.)
四、课堂小结
师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?
(请一个思路清晰,善于表达的学生口述,教师可从中给予提示.)
生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明时,应该注意证明的四个步骤.
五、作业
1.课本P53练习第1,2,3,4题.
数.
=a(x1-x2)(x1+x2)+b(x1-x2)
=(x1-x2)[a(x1+x2)+b].(*)
+b>0.由此可知(*)式小于0,即f(x1)<f(x2).
课堂教学设计说明
是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用.对学生来说,早已有所知,然而没有给出过定义,只是从直观上接触过这一性质.学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味.因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理.
另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点.因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用.
还有,使用函数单调性定义证明是一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助.另外,这也是以后要学习的不等式证明方法中的比较化的基本思路,现在提出要求,对今后的教学作一定的铺垫.
高一数学教案全集53
数学教案-圆
1、教材分析
(1)知识结构
(2)重点、难点分析
重点:①点和圆的三种位置关系,圆的有关概念,因为它们是研究圆的基础;②五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备。
难点:① 圆的集合定义,学生不容易理解为什么必须满足两个条件,内容本身属于难点;②点的轨迹,由于学生形象思维较强,抽象思维弱,而这部分知识比较抽象和难懂。
2、教法建议
本节内容需要4课时
第一课时:圆的定义和点和圆的位置关系
(1)让学生自己画圆,自己给圆下定义,进行交流,归纳、概括,调动学生积极主动的参与教学活动;对于高层次的学生可以直接通过点的集合来研究,给圆下定义(参看教案圆(一));
(2)点和圆的位置关系,让学生自己观察、分类、探究,在“数形”的过程中,学习新知识。
第二课时:圆的有关概念
(1)对(A)层学生放开自学,对(B)层学生在老师引导下自学,要提高学生的学习能力,特别是概念较多而没有很多发挥的内容,老师没必要去讲;
(2)课堂活动要抓住:由“数”想“形”,由“形”思“数”,的主线。
第三、四课时:点的轨迹
条件较好的学校可以利用电脑动画来加深和帮助学生对点的轨迹的理解,一般学校可让学生动手画图,使学生在动手、动脑、观察、思考、理解的过程中,逐步从形象思维较强向抽象思维过度。但我的观点是不管怎样组织教学,都要遵循学生是学习的主体这一原则。
第一课时:圆(一)
教学目标 :
1、理解圆的描述性定义,了解用集合的观点对圆的定义;
2、理解点和圆的位置关系和确定圆的条件;
3、培养学生通过动手实践发现问题的能力;
4、渗透“观察→分析→归纳→概括”的数学思想方法。
教学重点:点和圆的关系
教学难点 :以点的集合定义圆所具备的两个条件
教学方法:自主探讨式
教学过程 设计(总框架):
一、 创设情境,开展学习活动
1、让学生画圆、描述、交流,得出圆的第一定义:
定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径。记作⊙O,读作“圆O”。
2、让学生观察、思考、交流,并在老师的指导下,得出圆的第二定义。
从旧知识中发现新问题
观察:
共性:这些点到O点的距离相等
想一想:在平面内还有到O点的距离相等的点吗?它们构成什么图形?
(1) 圆上各点到定点(圆心O)的距离都等于定长(半径的长r);
(2) 到定点距离等于定长的点都在圆上。
定义2:圆是到定点距离等于定长的点的集合。
3、点和圆的位置关系
问题三:点和圆的位置关系怎样?(学生自主完成得出结论)
如果圆的半径为r,点到圆心的距离为d,则:
点在圆上d=r;
点在圆内d
点在圆外d>r.
“数”“形”
二、 例题分析,变式练习
练习: 已知⊙O的半径为5cm,A为线段OP的中点,当OP=6cm时,点A在⊙O________;当OP=10cm时,点A在⊙O________;当OP=18cm时,点A在⊙O___________.
例1 求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上。
已知(略)
求证(略)
分析:四边形ABCD是矩形
A=OC,OB=OD;AC=BD
OA=OC=OB=OD
要证A、B、C、D 4个点在以O为圆心的圆上
证明:∵ 四边形ABCD是矩形
∴ OA=OC,OB=OD;AC=BD
∴ OA=OC=OB=OD
∴ A、B、C、D 4个点在以O为圆心,OA为半径的圆上。
符号“”的应用(要求学生了解)
证明:四边形ABCD是矩形
OA=OC=OB=OD
A、B、C、D 4个点在以O为圆心,OA为半径的圆上。
小结:要证几个点在同一个圆上,可以证明这几个点与一个定点的距离相等。
问题拓展研究:我们所研究过的基本图形中(平行四边形,菱形,,正方形,等腰梯形)哪些图形的顶点在同一个圆上。(让学生探讨)
练习1 求证:菱形各边的中点在同一个圆上。
(目的:培养学生的分析问题的能力和逻辑思维能力。A层自主完成)
练习2 设AB=3cm,画图说明具有下列性质的点的集合是怎样的图形。
(1)和点A的距离等于2cm的点的集合;
(2)和点B的距离等于2cm的点的集合;
(3)和点A,B的距离都等于2cm的点的集合;
(4)和点A,B的距离都小于2cm的点的集合;(A层自主完成)
三、 课堂小结
问:这节课学习的主要内容是什么?在学习时应注意哪些问题?在学生回答的基础上,强调:
(1)主要学习了圆的两种不同的定义方法与圆的三种位置关系;
(2)在用点的集合定义圆时,必须注意应具备两个条件,二者缺一不可;
(3)注重对数学能力的培养
高一数学教案4
一、教学目标
1、理解一次函数和正比例函数的概念,以及它们之间的关系。
2、能根据所给条件写出简单的一次函数表达式。
二、能力目标
1、经历一般规律的探索过程、发展学生的抽象思维能力。
2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。
三、情感目标
1、通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。
2、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。
四、教学重难点
1、一次函数、正比例函数的概念及关系。
2、会根据已知信息写出一次函数的表达式。
五、教学过程
1、新课导入
有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的'增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的'关系,
请看:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加厘米。
(1)计算所挂物体的质量分别为1千克、 2千克、 3千克、 4千克、 5千克时弹簧的长度,
(2)你能写出x与y之间的关系式吗?
分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加厘米,总长度为厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长厘米,所挂物体为x千克,弹簧就伸长厘米,则弹簧总长为原长加伸长的长度,即y=3+。
2、做一做
某辆汽车油箱中原有汽油 100升,汽车每行驶 50千克耗油 9升。你能写出x与y之间的关系吗?(y=1000。18x或y=100 x)
接着看下面这些函数,你能说出这些函数有什么共同的特点吗?上面的几个函数关系式,都是左边是因变量,右边是含自变量的代数式,并且自变量和因变量的指数都是一次。
3、一次函数,正比例函数的概念
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
4、例题讲解
例1:下列函数中,y是x的一次函数的是( )
①y=x6;②y= ;③y= ;④y=7x
A、①②③ B、①③④ C、①②③④ D、②③④
分析:这道题考查的是一次函数的概念,特别要强调一次函数自变量与因变量的指数都是1,因而②不是一次函数,答案为B
高一数学的教案5
概念反思:
变式:关于 的不等式 在 上恒成立,则实数 的范围为__ ____
变式:设 ,则函数( 的最小值是 。
课后拓展:
1、下列说法正确的有 (填序号)
①若 ,当 时, ,则 在I上是增函数。
②函数 在R上是增函数。
③函数 在定义域上是增函数。
④ 的单调区间是 。
2、若函数 的零点 , ,则所有满足条件的 的和为?
3、 已知函数 ( 为实常数).
(1)若 ,求 的单调区间;
(2)若 ,设 在区间 的最小值为 ,求 的表达式;
(3)设 ,若函数 在区间 上是增函数,求实数 的取值范围.
解析:(1) 2分
∴ 的单调增区间为( ),(- ,0), 的单调减区间为(- ),( )
(2)由于 ,当 ∈[1,2]时,
10 即
20 即
30 即 时
综上可得
(3) 在区间[1,2]上任取 、 ,且
则
(*)
∵ ∴
∴(*)可转化为 对任意 、
即
10 当
20 由 得 解得
30 得 所以实数 的取值范围是