八年级上册数学教案精编5篇
【导言】此例“八年级上册数学教案精编5篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
八年级上册数学教案1
1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点.
2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.
1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.
2、通过分组讨论,培养学生合作交流意识和探索精神.
理解和领会反比例函数的概念.
领悟反比例的概念.
:
问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?
(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;
(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;
(3)已知北京市的总面积为×104平方千米,人均占有土地面积s(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.
师生行为:
先让学生进行小组合作交流,再进行全班性的问答或交流。学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.
教师组织学生讨论,提问学生,师生互动.
在此活动中老师应重点关注学生:
①能否积极主动地合作交流.
②能否用语言说明两个变量间的关系.
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.
分析及解答:(1)
;(2)
;(3)
其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;
上面的函数关系式,都具有
的形式,其中k是常数.
下列问题中,变量间的对应关系可用这样的函数式表示?
(1)一个游泳池的容积为20xxm3,注满游泳池所用的时间随注水速度u的变化而变化;
(2)某立方体的体积为1000cm3,立方体的高h随底面积s的变化而变化;
(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积s的变化而变化.
师生行为
学生先独立思考,在进行全班交流.
教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:
(1)能否从现实情境中抽象出两个变量的函数关系;
(2)能否积极主动地参与小组活动;
(3)能否比较深刻地领会函数、反比例函数的概念.
分析及解答:(1)
;(2)
;(3)
概念:如果两个变量x,y之间的关系可以表示成
的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.
做一做:
一个矩形的面积为20cm2, 相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?
师生行为:
学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:
①生能否理解反比例函数的意义,理解反比例函数的概念;
②学生能否顺利抽象反比例函数的模型;
③学生能否积极主动地合作、交流;
问题1:下列哪个等式中的y是x的反比例函数?
问题2:已知y是x的反比例函数,当x=2时,y=6
(1)写出y与x的函数关系式:
(2)求当x=4时,y的值.
师生行为:
学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:
①学生能否领会反比例函数的意义,理解反比例函数的概念;
②学生能否积极主动地参与小组活动.
分析及解答:
1、只有xy=123是反比例函数.
2、分析:因为y是x的反比例函数,所以
,再把x=2和y=6代入上式就可求出常数k的值.
解:(1)设
,因为x=2时,y=6,所以有
解得k=12
因此
(2)把x=4代入
,得
1、已知y是x的反比例函数,并且当x=3时,y=8.
(1)写出y与x之间的函数关系式.
(2)求y=2时x的值.
2、y是x的反比例函数,下表给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.
反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.
人教版八年级数学上册教案2
教学目标:
知识与技能
1.掌握直角三角形的判别条件,并能进行简单应用;
2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型。
3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论。
情感态度与价值观
敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。
教学重点
运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论。
教学难点
会辨析哪些问题应用哪个结论。
课前准备
标有单位长度的细绳、三角板、量角器、题篇
教学过程:
复习引入:
请学生复述勾股定理;使用勾股定理的前提条件是什么?
已知△ABC的两边AB=5,AC=12,则BC=13对吗?
创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法。
这样做得到的是一个直角三角形吗?
提出课题:能得到直角三角形吗
讲授新课:
⒈如何来判断?(用直角三角板检验)
这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?
就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)
⒉继续尝试:下面的三组数分别是一个三角形的三边长a,b,c:
5,12,13;6,8,10;8,15,17.
(1)这三组数都满足a2+b2=c2吗?
(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?
⒊直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。
满足a2+b2=c2的三个正整数,称为勾股数。
⒋例1一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角。工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?
随堂练习:
⒈下列几组数能否作为直角三角形的三边长?说说你的理由。
⑴9,12,15;⑵15,36,39;
⑶12,35,36;⑷12,18,22.
⒉已知?ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是角。
⒊四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积。
⒋习题
课堂小结:
⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。
⒉满足a2+b2=c2的三个正整数,称为勾股数。勾股数扩大相同倍数后,仍为勾股数。
八年级上册数学教案3
教学目标
知识与技能
能确定多项式各项的公因式,会用提公因式法把多项式分解因式。
过程与方法
使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解。
情感、态度与价值观
培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值。
教学重难点
重点:掌握用提公因式法把多项式分解因式。
难点:正确地确定多项式的最大公因式。
关键:提公因式法关键是如何找公因式。方法是:一看系数、二看字母。公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂。
教学过程
一、回顾交流,导入新知
复习交流
下列从左到右的变形是否是因式分解,为什么?
(1)2x2+4=2(x2+2);
(2)2t2-3t+1=(2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2;
(4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2.
问题:
1.多项式mn+mb中各项含有相同因式吗?
2.多项式4x2-x和xy2-yz-y呢?
请将上述多项式分别写成两个因式的乘积的形式,并说明理由。
教师归纳我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.
概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法。
二、小组合作,探究方法
教师提问:多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?
师生共识提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂。
三、范例学习,应用所学
例1:把-4x2yz-12xy2z+4xyz分解因式。
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
例2:分解因式:3a2(x-y)3-4b2(y-x)2
分析观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法。
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)2·3a2(y-x)+4b2(y-x)2]
=-(y-x)2[3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)2·3a2(x-y)-4b2(x-y)2
=(x-y)2[3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
例3:用简便的方法计算:
×12+12××12.
教师活动引导学生观察并分析怎样计算更为简便。
解:×12+12××12
=12×(+)
=12×1=12.
教师活动在学生完成例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?
四、随堂练习,巩固深化
课本115页练习第1、2、3题。
探研时空
利用提公因式法计算:
×+×+×+×
五、课堂总结,发展潜能
1.利用提公因式法因式分解,关键是找准最大公因式。在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂。
2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止。
六、布置作业,专题突破
课本119页习题第1、4(1)、6题。
人教版八年级数学上册教案4
教学目标:
1. 掌握三角形内角和定理及其推论;
2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
教学重点:三角形内角和定理及其推论。
教学难点:三角形内角和定理的证明
教学用具:直尺、微机
教学方法:互动式,谈话法
教学过程:
1、创设情境,自然引入
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
问题2 你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
2、设问质疑,探究尝试
(1)求证:三角形三个内角的和等于
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题1 观察:三个内角拼成了一个 什么角?
问题2 此实验给我们一个什么启示?
(把三角形的三个内角之和转化为一个平角)
问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值 ,那么对三角形的其它角还有哪些特殊的关系呢?
问题1 直角三角形中,直角与其它两个锐角有何关系?
问题2 三角形一个外角与它不相邻的两个内角有何关系?
问题3 三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
3、三角形三个内角关系的定理及推论
通过上面四个例题的分析与讨论,有利于学生基础知识与基本能力的掌握与提高,同时更有利于学生创新意识与创造性思维能力的培养,在练习、讲评等教学环节中,形成师生之间的、学生之间的“双向反馈”是很重要的。
4、变式训练,巩固提高
根据例4 的度数的求法,思考如下问题:
(3)如图5,过D点画AB的平行线MN,与AC、BC交于点M、N,则 的度数多少?
(4)当MN绕着点D旋转过程中, 会有怎样的变化?
提示:变化1 当直线MN与AC、BC的交点仍在线段AC、BC上时, =
变化2 当直线MN与AC的交点在线段AC上,与BC的交点在BC的延长线上时,
变化3 当直线MN与AC的交点在线段AC的延长线上,与BC的交点在线段BC上时, =
变化4当直线MN与AC、BC的交点在C点时, =
经过这样的变式、发展、学习,不仅使学生巩固了所学的数学知识,也使学生体验了数学的运动变化观,使学生的思维得到了培养。
5、小结
通过设置问题:“本节在知识方面以及在思想方法方面你有怎样的收获?”师生以谈话交流的形式进行小结。强调学生注意:辅助线的作用及运用定理及推论解决问题时,要善于抓住条件与结论的关系。
6、布置作业
a、书面作业P43#3
b、上交作业P42#16、17
八年级上册数学教案5
教学内容
本节课主要介绍全等三角形的概念和性质。
教学目标
1.知识与技能
领会全等三角形对应边和对应角相等的有关概念。
2.过程与方法
经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角。
3.情感、态度与价值观
培养观察、操作、分析能力,体会全等三角形的应用价值。
重、难点与关键
1.重点:会确定全等三角形的对应元素。
2.难点:掌握找对应边、对应角的方法。
3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,?两条对应边所夹的角是对应角。教具准备
四张大小一样的纸片、直尺、剪刀。
教学方法
采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识。教学过程
一、动手操作,导入课题
1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点?
2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点?
学生活动动手操作、用脑思考、与同伴讨论,得出结论。
教师活动指导学生用剪刀剪出重叠的两个多边形和三角形。
学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心。
互动交流剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合。这样的两个图形叫做全等形,用“≌”表示。
概念:能够完全重合的两个三角形叫做全等三角形。
教师活动在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?
学生活动动手操作,实践感知,得出结论:两个三角形全等。
教师活动要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边。
学生活动把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?
交流讨论通过同桌交流,实验得出下面结论:
1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合。
2.这时它们的三个顶点、三条边和三个内角分别重合了。
3.完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置。