首页 > 学习资料 > 教案大全 >

新六年级下册数学教案【通用5篇】

网友发表时间 2267991

【导言】此例“新六年级下册数学教案【通用5篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

六年级数学下册教案北师大版【第一篇】

教学目标:

1、理解含有百分数的统计表的特征和作用,掌握制作的方法,并能正确地制作。

2、理解表中数据的意义和关系,能根据表中的数据进行计算,回答问题或简单推理。

教学重点:百分数的计算和读表练习

教学难点:合计的百分数如何确定

教学过程:

昨天我们学习复式统计图,谁来说一说通过昨天的学习你学到了哪些有关复式统计图的知识?表名、单位、日期;表头的设计;合计和总计等。

出示小黑板:

拖拉机厂去年生产拖拉机情况统计表

20xx年1月

计划生产

实际生产

第一季度

2000

2100

第二季度

3000

3180

第三季度

3000

2850

第四季度

2000

2410

让学生结合昨天学习的知识,说图表中的数据表示什么意义?

你能设计表头吗?并把该统计图加以补充吗?

季度台数项目

总计

计划生产

实际生产

合计

10000

10540

第一季度

4100

2000

2100

第二季度

3000

3180

第三季度

3000

2850

第四季度

2000

2410

对于上面出现的总计,到底要不要?学生呈现一种是要,而且是如:4100,而有部分是要,但不是4100,而直接是2100,通过大家的讨论得出结论,理解为什么不要总计:因为这里的总计没有切实的意义。

(一)问题解决

现在大家能不能算一算每个季度完成的百分率?

学生的整体问题不是很大,很快的就能计算出。

填入上表得:

季度台数项目

计划生产

实际生产

完成计划百分数

合计

10000

10540

第一季度

2000

2100

105%

第二季度

3000

3180

106%

第三季度

3000

2850

95%

第四季度

2000

2410

%

到现在为止,表格完成了吗?还没有!还有一个合计的百分率没添?学生探讨该如何填写?思考汇报!

方法一、

方法二、

方法三、

针对学生出现的三种计算方法进行讨论到底该使用哪种方法?从该处的百分率所表示的意义出发:表示去年实际生产的台数是原计划的百分之几?从而理解用第一种方法计算。

(二)问题延伸

你能计算增产的百分率吗?计算并绘制统计表。

(三)读表练习

空调厂第一季度声场拖拉机情况,有部分数据已经记载在统计表上,请你把统计表填写完整。

年月

月份台数项目

计划生产

实际生产

增长百分数

合计

一月

2600

(1)

20%

二月

(2)

3220

15%

三月

3000

3720

(3)

含有百分数的复式统计表的百分数的计算,合计百分数的确定。

课后反思:

整堂课是在昨天学习的复式统计图的基础上增加了百分率,因该所百分率的计算问题不是特别的大,只要弄清楚这里的百分率表示什么,怎样计算就行?但是对于合计的百分率到底该怎么计算,学生会把各个百分数相加的和或是各个百分数平均数写上去,所以这里有必要要把课本上的例题稍加修改,因为例题中出现了问题:

原来例题:

季度台数项目

计划生产

实际生产

完成计划百分数

合计

8000

8650

第一季度

2000

2100

105%

第二季度

2000

2280

114%

第三季度

2000

1860

93%

第四季度

2000

2410

%

在确定最后一个百分数的时候,利用两种算法就出现了一样的结果:

方法一、

方法三、

这样学生就不能很好的区分到底是如何计算?因此在后来的设计中就修改了例题,使得在教学的过程中学生能够更好的确定使用哪种算法进行计算,直到例题介绍完,再让学生自习肯本上的例题,发现利用两种方法计算,结果相同,但是还是让学生明确是利用什么方法计算出这个结果的。

还有,比较课本上的教材安排可以发现,在后面的练习巩固是没有采用先完成试一试,而是直接就出示了练一练的习题,一是因为时间上不允许,于是为了提高课堂的时效性,先让学生练习练一练,把试一试作为机动;二是比较两个练习,可以发现,对于试一试学生的难度不是太大,是和例题相同的,而练一练对于大部分学生还是存在问题的,为了克服难点,练习的时候安排先让学生思考你要先算什么?如何计算?得出结论先计算出其中的(1)、(2)、(3),把问题的难点转化为以前学习的百分数问题,减低学生的难度。

六年级数学下册教案北师大版【第二篇】

[教学片断]

师:你们知道3的计算结果吗?

(绝大多数学生举起了手,部分同学迫不及待地说出了答案:)

师:说一说你们是怎么计算的?

生1:我从书上看到,分数与整数相乘时,只要把分子与整数相乘就可以了,分母不变。所以33=9,分子是9,分母仍然是10,结果就是。

(举手的学生都点头表示同意生1的发言,还有个别学生表示是数奥班的学习中了解到的。)

师:老师也同意用这个方法进行分数与整数相乘的计算。对于这种计算方法,大家还有什么疑问?

生2:为什么只把分子与整数相乘,分母10不和3相乘?

师:问得多好啊!看来你是经过积极思考的。(这个问题正是理解算理的关键)大家有什么想法?可以在小组内交流。

(几分钟以后,许多同学举起了手。)

生3:我是这么想的:3表示3个相加,同分母分数加减法的计算法则是:只把分子相加减,分母不变。所以只计算分子3+3+3,也就是33=9就可以了,分母仍然是10。

师:你能抓住分数乘整数的意义,从而将分数乘整数与分数加法的计算方法联系起来思考,真好!表扬!

生4:里面有3个,3个的3倍就是有9个,也就是。

师:你对分数的计算单位以及分数单位的个数理解得很透彻!

生5:如果将的分子和分母都乘3,根据分数的基本性质,结果还是,而不是3个。

师:你从反面给我们讲明了分母不能与整数相乘的道理,谢谢你。

生6:我认为等于,等于,也就是。所以,3等于。

生7:我想给大家举个例子说明3等于9。老师拿来10支粉笔,每天用去,也就是3支,三天用去9支,也就是用去这些粉笔的。

师:用日常生活中的实例来理解数学,也是一种非常好的学习方法。

生8:我是通过画图得到的结果。先画一个长方形,把它平均分成10份,其中的3份表示,我涂了3个,得到。

师:用画图法分析题意,也是我们经常采用的方法之一。你很会动脑!

[反思]

在这一片断中,学生积极主动地投入到问题的研讨和解决之中,课堂气氛轻松、活泼。反思这一教学过程的成功,主要原因是:及时调整策略,从学生的实际知识水平出发设计教学。

新课程标准强调,教师进行教学设计时,必须要遵循3备原则,即备课标、备教材、备学生。在教学《分数乘整数》之前,其实班里已经有许多学生知道了分数乘整数的计算方法。如果再按照一般的教学程序(呈现问题探讨研究得出结论)进行教学,学生就会觉得这些知识我早就知道了,没什么可学的了。,从而失去探究的兴趣,影响课堂教学的效率。教师的主导作用在于设计合理的符合学生学习实际的教学方法、形式,充分调动不同层次的学生的学习兴趣,满足不同学生的学习需要。因此在教学时,我故意将分数乘整数的结论灌输给学生,省去了获取结论的研究过程,意在让学生问为什么?。这时学生抓住这一质疑点,提出:为什么只把分子与整数相乘,分母10不和3相乘?接下来的教学就引导学生带着为什么去探索。由质疑开始的探索是学生为满足自身需要而进行的主动探索,因此学生在课堂上迫不及待地,积极主动地进行讨论,从不同的角度解决疑问。极大的发展了学生的思维,创新的火花在学生激情发言中迸发。

案例背景说明:本人执教的六年级2个班,其中六(4)班学生的基础较好,课外知识丰富,学生活泼好动,课堂气氛活跃,发言积极,常常有一鸣惊人的表现。故在教学中,我及时调整了策略,对2个班采用了不同的教学形式。即在给同轨教学班中的一个班上这节课时,按照通常的做法。先复习了乘法的意义,然后引入分数乘整数的意义,通过几个相同的分数相加引入分数乘整数的计算。教师步步铺垫,学生学起来可以说没什么困难,但课堂上却气氛沉闷,课下问原因,学生们说:老师,我们早就会了,听着觉得没什么意思。,所以作者在给另一个班上课时作了调整,于是就有了上面这个案例

六年级上册数学教案 | 六年级下册数学教案 | 数学教师工作计划 | 数学老师工作计划 | 数学教研组工作计划

六年级数学下册教案北师大版【第三篇】

1、请学生估计一下,我们的教学楼有多高?(学生回答大概12米,有的说10米)板书:10米。

2、出题:教学楼的高度比后面专用教室的高度的3倍还多1米?你们知道后面的教学楼大概有多高?

讨论:教学楼的高度和后面专用教室的高度有什么关系?

生1:教学楼的高度是后面专用教室的高度的3倍还多1米

生2:教学楼的高度比后面专用教室的高度的3倍多

生3:教学楼的高度比后面专用教室的高度高得多。

2、启发:教学楼的高度和后面专用教室的高度是不相等的,你能找出他们之间的相等的数量关系吗?

学生交流讨论。

生4:10米减去1米,再除以3,等于3米。检验一下是对的。

生5;后面专用教室的高度*3+1米=10米

3、列方程

4、解方程

反思:

列方程应用题大概步骤大家都知道:是在顺向思维的基础上,找出相等的数量关系,设出未知数列出方程,然后进行解方程。其重点是列方程,难点是找出相等的数量关系。本节课也真是在这样的思路下进行教学的。有几个体会值得注意:1、为什么要列方程来解题,学生不知所以然,其实正如上面的生4的回答。也是可以的,但用方程可以降低思维的难度,为今后的代数打好底子。2、本节课教材上的内容比较简单,是西安的大雁塔和小雁塔的高度比较,和我的举例差不多。在传统的教学中我们通常用线段图等形象的方法帮助学生理解题目中的相等关系。在今天的课堂上我没有涉及。在让学生找相等的数量关系时我给学生示范了一个文字分析法,比如:分析教学楼的高度比后教室的高度的3倍还多1米这句话,就可以这样转换成数学语言教学楼的高度比后面专用教室的高度的3倍还多1米

=*+

就是教学楼的高度=后教室的高度*3倍还+1米或者等号两边对调:

后教室的高度*3倍还+1米=教学楼的高度

这样的效果果然很好,起码让学生怎么找数量间的相等关系。只是觉得后进生可能会不动脑筋,只会望文生义,没有真正弄懂数量关系。3、本节课还有一个不容忽视的地方就是要让学生养成勤于检验的好习惯。

六年级数学下册教案北师大版【第四篇】

用分数表示可能性的大小"教学反思"

可能性这一教学内容在目前的小学数学教学中是一个全新的内容,属于统计与概率这一知识领域的概率范畴。由于概率知识本身比较抽象,小学生在学习这方面的内容时,存在一定困难。所以在教学这些内容时,主要是以直观的内容为主,目的是渗透一些概率的思想。为了让学生学得轻松、愉快,我从以下几个方面入手:

1、活动贯穿始终,经历知识的形成过程。

活动是儿童的天性,也是儿童感知世界,认识世界的重要方式。《数学课程标准》明确指出:让学生在具体的数学活动中体验数学知识。因此在课始部分,通过创设摸奖的情境,复习以前学习的有关可能性的知识,为学生学习新知奠定基础。新知学习部分,先通过例题1猜左右决定由谁先发球引导学生认识这一事件发生的可能性是相等的,由此想到可能性都是二分之一。以此为桥梁,将可能性由以前的定性描述过度到定量刻画,这也比较容易让学生接受。紧接着,组织学生完成试一试,通过摸球,继续感知在摸球过程中每种事件发生的可能性是相等的,可以用同一个分数表示可能性的大小。而例题2的学习比例1提高一个层次,为了让提高学生学习的积极性,利用魔术表演中常见的扑克牌为载体,让学生对新知产生浓厚的好奇心,从而激起其强烈的求知欲。整堂课始终为学生创设各种游戏活动,让其在经历一系列有意义的数学活动中,逐步丰富起对可能性大小的体验,理解并掌握用分数表示各种事件发生的可能性的大小的意义和方法。

2、紧密联系生活,突出学以致用。

在本节课的练习中,设计了一组紧密联系学生生活实际的问题,为学生学以致用创造了条件。如通过猜左右的方法决定发球权来判断游戏规则的公平性,从不同的摸奖活动方案中认识中奖率的大小,让学生感受到概率知识就在我们的身边,让学生感受到学习数学的意义与价值。

3.注重对知识的深层挖掘。

试一试的第(1)小题是要学习用几分之几来表示可能性的大小,结合学生的多种思考方法,让其体会到解决问题时方法的多样性。在此基础上,引导学生对用分数表示可能性的大小问题进行更深层次的挖掘。因此,在学生能用分数表示可能性时,提出如果任意摸一个球,使摸到红球的可能性是七分之三,可以怎么装球?此时,学生思维处于极度活跃状态,也使学生积极地参与学习中,同时也有利于对学生进行发散性思维的培养。学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,学数学与学好数学的区别就在与你是拥有了一条鱼,还是拥有了一张网。而六年级学生已经有较好的数学思维能力了,因此,在课堂上,要培养其善于思考的能力,教会学生如何拥有一张网,去捕获所有的鱼。

本堂课由于放与收的度掌握的不好,而导致后面的练习时间不充分,对于例1的讲解也过于简单,这也对学生学习后面的知识造成了一定的困难。因此,对于教材的解读能力还有待于自己在今后的教学中不断的学习、钻研和探索。这次教学实践,让我深深体会到,只有关注课堂的原生态,关注学生的学,才能使课堂教学由单一的传输转变为双向甚至多向的互动与对话,才能由重学习结果转变为重学习过程,由重教师的作用转变为重学生的体验,由重知识的落实转变为重人的发展,才能真正赋予课堂以生活的意义和生命的价值。

总之本节课中还有许多缺点和不足,恳请各位领导和同仁批评指正!

附教案:

用分数表示可能性的大小

射阳县码头小学王春梅

[教学内容]

教科书数学六年级上册94-96页例1、例2及试一试、练一练和练习十八的第1、2题。

[教学目标]

1、理解并掌握用分数表示可能性大小的基本思考方法,会用分数表示简单事件发生的可能性,进一步加深对可能性大小的认识。

2、进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。

3、认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。

[教学过程]

谈话:同学们,节假日的时候很多超市门口都设有摸奖活动,以此来吸引顾客。这是国庆节期间农工商超市设立的摇奖活动。

师:猜猜看中奖规则是怎样的呢?

1、教学例1

师:同学们,你们喜欢打乒乓吗?打乒乓时,你们用什么方法决定谁先发球?

在这幅图中,裁判将乒乓球握在手中,让运动员猜球在左手还是在右手?猜对了谁就先发球。你认为用猜左右的方法决定由谁先发球公平吗?为什么?

师:同学们,这里的1/2表示什么意思?

2、完成试一试

师出示袋子、红黄两球

任意摸一个球,摸到红球的可能性是几分之几?

师在袋中又放入一个绿色球,师:现在任意摸一个球,摸到红球的可能性是几分之几?

师:任意摸一个球,都是摸红球,为什么摸到的可能性不一样呢?

师追问:现在任意摸一个球,摸到黄球的可能性是几分之几?

摸到绿球的可能性是几分之几?

师:如果往这个袋子里再添一个蓝球,那么任意摸一个球,摸到黄球的可能性是几分之几呢?如果再添一个黑球呢?从这个实验中,你有什么发现呢?

师小结:袋中有几个球,任意摸一个球,摸到其中一个球的可能性就是几分之一。

3、教学例2

师:在图中你看到了哪几张牌?

把牌洗一下反扣在桌上,从中任意摸一张,摸到红桃a的可能性是几分之几?摸到黑桃a的可能性是几分之几?摸到其它牌的可能性呢?

师:看了这6张牌,你还能提出关于可能性的数学问题吗?先自己想一想,然后把你的问题在小组里说一说。

学生四人为小组活动,互相提问。

师:同学们提出了许多问题,我们选择其中五个问题来研究。请看屏幕,大家把这些问题默读一遍。

师:我们先看第一个问题。该怎么解答呢?

课件分别呈示两种方法。

师:剩下的四个问题,请大家在本子上列式解答。

师总结:从这里可以看出,任意摸一张,摸到某种牌的可能性是几分之几,我们要看一共有()张牌,()牌有()张,摸到()牌的可能性是()/()。

4、完成试一试

课件出示试一试,学生口答,要求学生从两个角度解释自己作出的结论。

师:如果要使摸到红球的可能性是3/7,那么该怎样装球呢?

1、完成练一练(出示农工商超市的转盘)

师:指针转动80次,可能有10次停在红色区域。这句话中的可能能不能换成一定?为什么?

2、完成练习十八第1、2题

3、游戏:幸运大抽奖。

师:同学们,学习了这节课,你有什么收获?把你的收获和同学们说一说。

六年级数学下册教案北师大版【第五篇】

苏教版教材中单独把解决问题的策略作为一个教学单元。在执教过程中有许多成功经验,也有许多迷茫,偏颇之处,不能不引起我们的反思和讨论。

案例:苏教版第十一册解决问题的策略-替换一课,课本以和倍问题作为例题,让学生体会使用替换的策略解决能便于解决有两个未知量的题目。有部分教师把课堂设计成和差,和倍问题的练习课,把教授如何解决该类问题作为课堂重点,使课堂失去生命力。

其实十一册第一单元已教授了列方程解决该类问题的方法,如果把该节课定位在训练解题技巧上,是对教学内容的简单重复。学生的思维仍停留于如何解题,没有提升到利用两个未知量之间的关系统一为一个未知量是一种策略的高度。不能形成更抽象的数学思维。

解决问题的策略重点应是让学生在解决问题的基础上体会到各种解决方法的共同点,体会方法中渗透的数学思维。解决问题的策略如列表,画图,一一列举,替换等实际上是数学思想方法而不是解题技巧。因此,解决问题的策略的课堂应该把设计的重点放在如何让学生体会这些策略有什么共同点,感受这些策略为解决问题带来方便,重在体会。

另一方面,学生的程度是不一致的,有的学生可能上新课前已经掌握了解决该类问题的具体方法。有的学生可能需要几节课才能掌握该类问题的解题技巧。因为这些例题本来就是由奥数题改编而来。把课堂的重点定位在体会策略的优势是使不同程度的学生都有所收获。

例如本案例,课堂开始我以曹冲称象的故事为导入,后进生如果感受到替换的策略能把生活中的难题变简单,他就有收获。而学习较好的学生能体会数学策略能应用于生活,他也有所收获。只有让学生都感受到数学的魅力,数学课的生命力才得以延伸。

本节案例其中一个教学难点是让学生体验如何替换。如果每道题都需要通过实际操作体验不仅费时,而且受课堂条件限制,许多操作将不能进行。

在教授本课时,我采取了结合画图,倒推等策略帮助学生体会如何替换。学生已经掌握了画图等策略,在课堂上只要适当点拨,能把题目的情景以线段图、实物图、数量关系式等方式呈现,学生通过多种的呈现方式,能对题目有更全面的理解,对替换的过程的认识就更深入。

例如:1个大杯和6个小杯,大杯的容量是小杯的三分之一,学生可以通过以下方式呈现

学生1:∵3小杯=1大杯

1大杯+6小杯=3小杯+6小杯=9小杯

学生2小杯:

大杯:

画图的方式更能体现学生的思维过程,学生通过观察其他同学的示意图更容易理解其思路,促进生生互评,使课堂更具生命力。

三\解决问题的策略应回归生活

有部分学生认为,解决问题的策略是高深莫测的,是难以理解的,这和教师长期误解该课的教学重点有很大联系。实际生活中我们也常用到这些策略解决问题,如果教师教学时适当从身边的例子引入,以生动的故事引入,更能激发学生学习的欲望。

以本课为例,我以曹冲称象的例子引入,学生在故事中体会到策略源于生活,而且不难理解和操作。最后我还以老师在麦当劳买套餐的例子让学生利用替换的策略解决问题。

例2李老师和朋友买了一份套餐:2只鸡翅+1杯可乐=16元

已知可乐的价格比鸡翅多1元,李老师吃了一只鸡翅该付多少钱?

从学生熟悉的麦当劳套餐引发数学思考,学生的积极性更高,对策略的学习更有归属感。

解决问题的策略是苏教版教材的其中一个亮点,只要教师利用得当,学生思维可以得到更大提高。通过反思教学我们获得前进的动力,愿我们养成反思的习惯,愿我们能在反思中摄取营养,不断进步。

相关推荐

热门文档

20 2267991