2024年高中数学必修一知识点实用整理实用【实用10篇】
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“2024年高中数学必修一知识点实用整理实用【实用10篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
2024年高中数学必修一知识点实用整理【第一篇】
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.
2.数列的分类。
(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.
(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.
3.数列的通项公式。
由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.
再强调对于数列通项公式的理解注意以下几点:
(1)数列的通项公式实际上是一个以正整数集n.或它的有限子集{1,2,…,n}为定义域的函数的表达式.
(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.
(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.
如2的不足近似值,精确到1,,,,,…所构成的数列1,,,,,…就没有通项公式.
(4)有的数列的通项公式,形式上不一定是的,正如举例中的:
(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.
4.数列的图象。
对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:
序号:1234567。
项:45678910。
这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集n.(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.
由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.
数列是一种特殊的函数,数列是可以用图象直观地表示的.
数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.
把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.
2024年高中数学必修一知识点实用整理【第二篇】
一、通假字。
1、虽有其槁暴,不复挺者。(有:同“又”。暴:同“曝”,晒干。)。
2、木直中绳,?以为轮。(?:同“?”,以火烘木,使其弯曲。)。
3、师者,以是传道受业解惑也。(受:同“授”,教授。)。
4、则知明而行无过矣。(知:同“智”,伶俐)。
5、正人生非异也。(生:同“性”,先天,天资。)。
6、或师焉,或不焉。(不:同“否”。)。
7、浩浩乎如冯虚御风。(冯:同“凭”。)。
8、自余为戮人。(戮:同“戮”,刑辱。)。
9、意有所极,梦亦同趣。(趣:同“趋”,往,赴。)。
10、山川相缪。(缪:同“缭”,连结,盘绕。)。
11、举匏尊以相属。(尊:同“樽”,酒杯。)。
二、词类活用。
1、其下贤人也亦远矣。(低于)。
2、假舟楫者,非能水也。(游泳)。
3、方其破荆州,下江陵。(攻占)。
4、故为之文以志。(写文章)。
5、外与天涯。(交会)。
6、顺流而东。(东进)。
7、卧而梦。(做梦)。
2024年高中数学必修一知识点实用整理【第三篇】
在讲评试卷时,不应该也不必要平均使用力量,有些试题只要点到为止,有些试题则需要仔细剖析,对那些涉及重难点知识且能力要求比较高的试题要特别照顾;对于学生错误率较高的试题,则要对症下药。为此教师必须认真批阅试卷,对每道题的得分率应细致地进行统计,对每道题的错误原因准确地分析,对每道题的评讲思路精心设计,只有做到评讲前心中有数,才会做到评讲时有的放矢。
贵在方法,重在思维。
方法是关键,思维是核心,渗透科学方法,培养思维能力是贯穿数学教学全过程的首要任务。通过试卷的评讲过程,应该使学生的思维能力得到发展,分析与解决问题的悟性得到提高,对问题的化归意识得到加强训练:多题一解”和“一题多解”,不在于方法的罗列,而在于思路的分析和解法的对比,从而揭示最简或最佳的解法。
分类化归,集中讲评。
涉及相同知识点的题,集中讲评;形异质同的题,集中评讲;形似质异的题,集中评讲。综上所述,不管是高中数学还是其他科目,只要我们能找对复习的方法,就一定能复习好这门功课。
2024年高中数学必修一知识点实用整理【第四篇】
必修一:1、集合与函数的概念(部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)。
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。
3、圆方程:
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2。
选修1--1:重点:高考占30分。
1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)。
选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。
理科:选修2—1、2—2、2—3。
选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)。
选修2--2:1、导数与微积分2、推理证明:一般不考3、复数。
选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:
2024年高中数学必修一知识点实用整理【第五篇】
课堂上特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
1、要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。
2、刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。
3、对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
4、在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。
2024年高中数学必修一知识点实用整理【第六篇】
在课本中能找到原型,有的是对课本原型进行加工、组合、延伸和拓展.复习中要紧扣教材,夯实基础,同时关注新教材中的新知识,对课本知识进行系统梳理,形成知识网络,同时对典型问题进行变式训练,达到举一反三、触类旁通的目的,做到以不变应万变,提高应变能力.
重视对基础知识的理解。
基础知识即高中数学课程中所涉及的概念、公式、公理、定理等.要求学生能揭示各知识点的内在联系,从知识结构的整体出发去解决问题,要求学生综合运用各种知识于一题.
针对热点,抓住弱点,开展难点知识专题复习.根据历年高考试卷命题的特点,精心选择一些新颖的、有代表性的题型进行专题训练.每年的高考数学会出现一两道难度较大、综合性较强的数学问题,解决这类问题所用到的知识都是同学们学过的基础知识,并不依赖于那些特别的、没有普遍性的答题技巧,而主要是知识间的相互关系.
2024年高中数学必修一知识点实用整理【第七篇】
本节主要包括函数的模型、函数的应用等知识点。主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。
1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。
2、用函数解应用题的基本步骤是:
(1)阅读并且理解题意。(关键是数据、字母的实际意义);
(2)设量建模;
(3)求解函数模型;
(4)简要回答实际问题。
常见考法:
本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。
误区提醒:
1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。
2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。
2024年高中数学必修一知识点实用整理【第八篇】
有序则排无序组,正难则反排除它。
元素重复连乘法,特元特位你先拿;
平均分组阶乘除,多元少位我当家。
二项式定理。
二项乘方知多少,万里源头通项找;
展开三定项指系,组合系数杨辉角。
整除证明底变妙,二项求和特值巧;
两端对称谁最大?主峰一览众山小。
概率与统计。
概率统计同根生,随机发生等可能;
互斥事件一枝秀,相互独立同时争。
样本总体抽样审,独立重复二项分;
随机变量分布列,期望方差论伪真。
2024年高中数学必修一知识点实用整理【第九篇】
初中学生学数学,靠的是一个字:练!高中学生学数学,靠的也是一个字:悟!
1、做作业前先把笔记消化掉。
有的高一学生感到,老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。
因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
2、做完题要多反思。
学生一定要明确,现在正做着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思,总结一下自己的收获。
要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串。日久天长,构建起一个内容与方法的科学的网络系统。俗话说:“有钱难买回头看”。做完作业,回头细看,价值极大。这个回头看,是学习过程中很重要的一个环节。
要看看自己做对了没有;还有什么别的解法;题目处于知识体系中的什么位置;解法的本质什么;题目中的已知与所求能否互换,能否进行适当增删改进。有了以上五个回头看,学生的解题能力才能与日俱增。投入的时间虽少,效果却很大。可称为事半功倍。
有的学生认为,要想学好数学,只要多做题,功到自然成。其实不然。一般说做的题太少,很多熟能生巧的问题就会无从谈起。因此,应该适当地多做题。但是,只顾钻入题海,堆积题目,在考试中一般也是难有作为的。要把提高当成自己的目标,要把自己的活动合理地系统地组织起来,要总结反思,水平才能长进。
2024年高中数学必修一知识点实用整理【第十篇】
必修课程由5个模块组成:
必修1:集合、函数概念与基本初等函数(指、对、幂函数)。
必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
2.重难点及考点: