高二数学教案【优质5篇】
【阅读指引】阿拉题库网友为您分享整理的“高二数学教案【优质5篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
高二数学教案【第一篇】
教学目的:
1、使学生理解线段的垂直平分线的性质定理及逆定理,掌握这两个定理的关系并会用这两个定理解决有关几何问题。
2、了解线段垂直平分线的轨迹问题。
3、结合教学内容培养学生的动作思维、形象思维和抽象思维能力。
教学重点:
线段的垂直平分线性质定理及逆定理的引入证明及运用。
教学难点:
线段的垂直平分线性质定理及逆定理的关系。
教学关键:
1、垂直平分线上所有的点和线段两端点的距离相等。
2、到线段两端点的距离相等的所有点都在这条线段的垂直平分线上。
教具:投影仪及投影胶片。
教学过程:
一、提问
1、角平分线的性质定理及逆定理是什么?
2、怎样做一条线段的垂直平分线?
二、新课
1、请同学们在课堂练习本上做线段AB的垂直平分线EF(请一名同学在黑板上做)。
2、在EF上任取一点P,连结PA、PB量出PA=?,PB=?引导学生观察这两个值有什么关系?
通过学生的观察、分析得出结果PA=PB,再取一点P'试一试仍然有P'A=P'B,引导学生猜想EF上的所有点和点A、点B的距离都相等,再请同学把这一结论叙述成命题(用幻灯展示)。
定理:线段的垂直平分线上的点和这条线段的两个端点的距离相等。
这个命题,是我们通过作图、观察、猜想得到的,还得在理论上加以证明是真命题才能做为定理。
例题:
已知:如图,直线EF⊥AB,垂足为C,且AC=CB,点P在EF上
求证:PA=PB
如何证明PA=PB学生分析得出只要证RTΔPCA≌RTΔPCB
答:证明:∵PC⊥AB(已知)
∴∠PCA=∠PCB(垂直的定义)
在ΔPCA和ΔPCB中
∴ΔPCA≌ΔPCB(SAS)
即:PA=PB(全等三角形的对应边相等)。
反过来,如果PA=PB,P1A=P1B,点P,P1在什么线上?
过P,P1做直线EF交AB于C,可证明ΔPAP1≌PBP1(SSS)
∴EF是等腰三角型ΔPAB的顶角平分线
∴EF是AB的垂直平分线(等腰三角形三线合一性质)
∴P,P1在AB的垂直平分线上,于是得出上述定理的逆定理(启发学生叙述)(用幻灯展示)。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
根据上述定理和逆定理可以知道:直线MN可以看作和两点A、B的距离相等的所有点的集合。
线段的垂直平分线可以看作是和线段两个端点距离相等的所有点的集合。
三、举例(用幻灯展示)
例:已知,如图ΔABC中,边AB,BC的垂直平分线相交于点P,求证:PA=PB=PC。
证明:∵点P在线段AB的垂直平分线上
∴PA=PB
同理PB=PC
∴PA=PB=PC
由例题PA=PC知点P在AC的垂直平分线上,所以三角形三边的垂直平分线交于一点P,这点到三个顶点的距离相等。
四、小结
正确的运用这两个定理的关键是区别它们的条件与结论,加强证明前的分析,找出证明的途径。定理的作用是可证明两条线段相等或点在线段的垂直平分线上。
《教案设计说明》
线段的垂直平分线的性质定理及逆定理,都是几何中的重要定理,也是一条重要轨迹。在几何证明、计算、作图中都有重要应用。我讲授这节课是线段垂直平分线的第一节课,主要完成定理的引出、证明和初步的运用。
在设计教案时,我结合教材内容,对如何导入新课,引出定理以及证明进行了探索。在导入新课这一环节上我先让学生做一条线段AB的垂直平分线EF,在EF上取一点P,让学生量出PA、PB的长度,引导学生观察、讨论每个人量得的这两个长度之间有什么关系:得到什么结论?学生回答:PA=PB。然后再让学生取一点试一试,这两个长度也相等,由此引导学生猜想到线段垂直平分线的性质定理。在这一过程中让学生主动积极的参与到教学中来,使学生通过作图、观察、量一量再得出结论。从而把知识的形成过程转化为学生亲自参与、发现、探索的过程。在教学时,引导学生分析性质定理的题设与结论,画图写出已知、求证,通过分析由学生得出证明性质定理的方法,这个过程既是探索过程也是调动学生动脑思考的过程,只有学生动脑思考了,才能真正理解线段垂直平分线的性质定理,以及证明方法。在此基础上再提出如果有两点到线段的两端点的距离相等,这样的点应在什么样的直线上?由条件得出这样的点在线段的垂直平分线上,从而引出性质定理的逆定理,由上述两个定理使学生再进一步知道线段的垂直平分线可以看作是到线段两端点距离的所有点的集合。这样可以帮助学生认识理论来源于实践又服务于实践的道理,也能提高他们学习的积极性,加深对所学知识的理解。在讲解例题时引导学生用所学的线段垂直平分线的性质定理以及逆定理来证,避免用三角形全等来证。最后总结点P是三角形三边垂直平分线的交点,这个点到三个顶点的距离相等。为了使学生当堂掌握两个定理的灵活运用,让学生做87页的两个练习,以达到巩固知识的目的。
数学高二教案【第二篇】
教学内容
教材第2页的例2,第3页的小数乘法法则和“做一做”,练习一的第5?9题。
素质教育目标
(一)知识教学点
1.使学生理解一个数乘以小数的意义。
2.掌握小数乘法的计算法则。
(二)能力训练点
1.能说出小数乘法算式所表示的意义。
2.能比较正确地计算小数乘法,提高计算能力。
3.培养学生的迁移类推能力和概括能力以及运用所学知识解决新问题的能力。
(三)德育渗透点
继续渗透转化思想。
教学重点:
理解一个数乘以小数的意义,会应用小数乘法的计算法则正确地进行计算。
教学难点:
理解一个数乘以小数的意义和小数乘法中积的小数点的定位。
教具学具准备:
口算卡片、投影片。
教学步骤
一、铺垫孕伏
1.口算:
×6 ×4 ×0 ×8
×4 ×3 ×5 ×9
2.说出下列小数表示的意义:
使学生明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
3.复习例1,花布每米元,买5米要用多少元?
(1)指名列式计算,然后说一说小数乘以整数的意义和小数乘以整数的计算方法。
(2)引导学生知道:每米元是单价,5米是数量,求的是总价。根据单价×数量=总价也可以列出乘法算式。
二、探究新知
1.理解一个数乘以小数的意义。
(1)教学例2
①出示例2花布每米元,买米用多少元?
②读题,理解题意,从题中你知道了什么?
引导学生知道:每米元是单价,米是买的数量,求的是总价。根据单价×数量=总价可以列式为×。
教师板书:
×
③用线段图表示题中的数量关系:
④启发学生理解:米是1米的十分之五,×就是求的十分之五是多少。
教师板书:
求的十分之五
引导学生类推:
×就是求的十分之四是多少,
×就是求的十分之七是多少,
……
一个数乘以零点几就是求这个数的十分之几是多少。
互相讨论得出结论:一个数乘以一位小数的意义是求这个数的十分之几。
(2)补充例2,买米用多少元?
①引导学生用线段图表示:
②启发学生理解:每米元是布的单价,米是买布的数量,求的'是总价,列式为×。
教师板书:
×
米是1米的百分之八十二,×就是求的百分之八十二。
教师板书:
求的百分之八十二
仿照×的教学方法,引导学生类推得出:
一个数乘以两位小数的意义就是求这个数的百分之几。
③师生共同小结:一个数乘以一位小数的意义是求这个数的十分之几,乘以两位小数的意义是求这个数的百分之几。
④引导学生类推:一个数乘以三位小数就是求这个数的千分之几,一个数乘以四位小数就是求这个数的万分之几,……
最后概括板书:一个数乘以小数的意义是求这个数的十分之几,百分之几,千分之几……
2.探究一个数乘以小数的计算方法。
(1)提出问题,学生讨论:
计算小数乘以整数,是把小数转化成整数计算的,×和×这两个算式中,被乘数和乘数都含有小数位,应该怎样计算?
(2)通过讨论汇报,使学生明白:把×变成整数乘法,变成65扩大了10倍,变成5也扩大了10倍,这样乘出来的积就扩大了10×10=100倍,要求原来的积,应把乘出来的积再缩小100倍。同时教师板书:
把×变成整数乘法,变成65扩大10倍,变成82扩大100倍,这样乘出来的积就扩大了10×100=1000倍。要求原来的积,应把乘出来的积再缩小1000倍。教师板书:
说明书写的格式,并提示学生:要先点小数点,再把小数末尾的“0”划掉。
3.总结小数乘法的计算法则。
(1)引导学生观察算式得出:两个因数中一共有两位小数,积中就有两位小数;两个因数中一共有三位小数,积中就有三位小数。
(2)想一想:×的积中有几位小数?×的积中有几位小数?
(3)引导学生概括:两个因数中一共有几位小数,积中就几位小数。
(4)在小数乘以整数的计算方法的基础上,师生共同归纳总结出小数乘法的计算法则。
(5)完成法则下面的“做一做”。
出示 67× × × ×先判断积里应该有几位小数,再让学生独立计算,然后集体订正。订正时学生说一说是怎样计算的。
三、巩固发展
1.练习一5题
(1)题,先引导学生理解“十分之三”和“一半”分别用什么数表示,然后学生独立列式。
(2)题,学生独立列式,订正时,说一说根据什么列式的。
2.说出下列算式表示的意义:
× 13× ×15 24×
3.练习一6题
4.在下面各式的积中点上小数点。
5.练习一8题。学生独立填书,订正时指名说一说是怎样想的。
四、全课小结:引导学生回忆这节课学习了什么知识?
五、布置作业:练习一7题、9题。
高二数学教案【第三篇】
第06课时
2、2、3 直线的参数方程
学习目标
1、了解直线参数方程的条件及参数的意义;
2、 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。
学习过程
一、学前准备
复习:
1、若由 共线,则存在实数 ,使得 ,
2、设 为 方向上的 ,则 =︱ ︱ ;
3、经过点 ,倾斜角为 的直线的普通方程为 。
二、新课导学
探究新知(预习教材P35~P39,找出疑惑之处)
1、选择怎样的参数,才能使直线上任一点M的坐标 与点 的坐标 和倾斜角 联系起来呢?由于倾斜角可以与方向联系, 与 可以用距离或线段 数量的大小联系,这种方向有向线段数量大小启发我们想到利用向量工具建立直线的参数方程。
如图,在直线上任取一点 ,则 = ,
而直线
的单位方向
向量
=( , )
因为 ,所以存在实数 ,使得 = ,即有 ,因此,经过点
,倾斜角为 的直线的参数方程为:
2、方程中参数的几何意义是什么?
应用示例
例1.已知直线 与抛物线 交于A、B两点,求线段AB的长和点 到A ,B两点的距离之积。(教材P36例1)
解:
例2.经过点 作直线 ,交椭圆 于 两点,如果点 恰好为线段 的中点,求直线 的方程。(教材P37例2)
解:
反馈练习
1、直线 上两点A ,B对应的参数值为 ,则 =( )
A、0 B、
C、4 D、2
2、设直线 经过点 ,倾斜角为 ,
(1)求直线 的参数方程;
(2)求直线 和直线 的交点到点 的距离;
(3)求直线 和圆 的两个交点到点 的距离的和与积。
三、总结提升
本节小结
1、本节学习了哪些内容?
答:1.了解直线参数方程的条件及参数的意义;
2、 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。
学习评价
一、自我评价
你完成本节导学案的情况为( )
A.很好 B.较好 C. 一般 D.较差
课后作业
1、 已知过点 ,斜率为 的直线和抛物线 相交于 两点,设线段 的中点为 ,求点 的坐标。
2、经过点 作直线交双曲线 于 两点,如果点 为线段 的中点,求直线 的方程
3、过抛物线 的焦点作倾斜角为 的弦AB,求弦AB的长及弦的中点M到焦点F的距离。
高二数学优秀教案【第四篇】
一、学情分析
本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。
二、考纲要求
1、会用坐标表示平面向量的加法、减法与数乘运算。
2、理解用坐标表示的平面向量共线的条件。
3、掌握数量积的坐标表达式,会进行平面向量数量积的运算。
4、能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件。
三、教学过程
(一)知识梳理:
1、向量坐标的求法
(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标。
(2)设A(x1,y1),B(x2,y2),则
=xxxxxxxxxxxxxxxx_
||=xxxxxxxxxxxxxx_
(二)平面向量坐标运算
1、向量加法、减法、数乘向量
设=(x1,y1),=(x2,y2),则
+=-=λ=。
2、向量平行的坐标表示
设=(x1,y1),=(x2,y2),则∥?xxxxxxxxxxxxxxxx.
(三)核心考点·习题演练
考点1.平面向量的坐标运算
例1.已知A(-2,4),B(3,-1),C(-3,-4)。设(1)求3+-3;
(2)求满足=m+n的实数m,n;
练:(20xx江苏,6)已知向量=(2,1),=(1,-2),若m+n=(9,-8)
(m,n∈R),则m-n的值为
考点2平面向量共线的坐标表示
例2:平面内给定三个向量=(3,2),=(-1,2),=(4,1)
若(+k)∥(2-),求实数k的值;
练:(20xx,四川,4)已知向量=(1,2),=(1,0),=(3,4)。若λ为实数,(+λ)∥,则λ=( )
思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?
方法总结:
1、向量共线的两种表示形式
设a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②。
2、两向量共线的充要条件的作用
判断两向量是否共线(平行的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值。
考点3平面向量数量积的坐标运算
例3“已知正方形ABCD的边长为1,点E是AB边上的动点,
则的值为;的值为。
提示解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷。
练:(20xx,安徽,13)设=(1,2),=(1,1),=+k.若⊥,则实数k的值等于( )
思考两非零向量⊥的充要条件:·=0? 。
解题心得:
(1)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.
(2)解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷。
(3)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0.
考点4:平面向量模的坐标表示
例4:(20xx湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则的值为( )
练:(20xx,上海,12)
在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则的取值范围是?
解题心得:
求向量的模的方法:
(1)公式法,利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;
(2)几何法,利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解。.
五、课后作业(课后习题1、2题)
数学高二教案【第五篇】
我们先看下面两个问题。
(l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?
因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法。
一般地,有如下原理:
加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,,在第n类办法中有mn种不同的方法。那么完成这件事共有N=m1十m2十十mn种不同的方法。
(2) 我们再看下面的问题:
由A村去B村的道路有3条,由B村去C村的道路有2条。从A村经B村去C村,共有多少种不同的走法?
这里,从A村到B村有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又有2种不同的走法。因此,从A村经B村去C村共有 3X2=6种不同的走法。
一般地,有如下原理:
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,,做第n步有mn种不同的方法。那么完成这件事共有N=m1 m2mn种不同的方法。
例1 书架上层放有6本不同的数学书,下层放有5本不同的语文书。
1)从中任取一本,有多少种不同的取法?
2)从中任取数学书与语文书各一本,有多少的取法?
解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法。根据加法原理,得到不同的取法的种数是6十5=11.
答:从书架L任取一本书,有11种不同的取法。
(2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法。根据乘法原理,得到不同的取法的种数是 N=6X5=30.
答:从书架上取数学书与语文书各一本,有30种不同的方法。
练习: 一同学有4枚明朝不同古币和6枚清朝不同古币
1)从中任取一枚,有多少种不同取法? 2)从中任取明清古币各一枚,有多少种不同取法?
例2:(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数?
(2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数?
(3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数?
解:要组成一个三位数可以分成三个步骤完成:第一步确定百位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复,
这仍有5种选法,第三步确定个位上的数字,同理,它也有5种选法。根据乘法原理,得到可以组成的三位数的个数是N=5X5X5=125.
答:可以组成125个三位数。
练习:
1、从甲地到乙地有2条陆路可走,从乙地到丙地有3条陆路可走,又从甲地不经过乙地到丙地有2条水路可走。
(1)从甲地经乙地到丙地有多少种不同的走法?
(2)从甲地到丙地共有多少种不同的走法?
2.一名儿童做加法游戏。在一个红口袋中装着2O张分别标有数1、2、、19、20的红卡片,从中任抽一张,把上面的数作为被加数;在另一个黄口袋中装着10张分别标有数1、2、、9、1O的黄卡片,从中任抽一张,把上面的数作为加数。这名儿童一共可以列出多少个加法式子?
3.题2的变形
4.由0-9这10个数字可以组成多少个没有重复数字的三位数?
小结:要解决某个此类问题,首先要判断是分类,还是分步?分类时用加法,分步时用乘法
其次要注意怎样分类和分步,以后会进一步学习
练习
1.(口答)一件工作可以用两种方法完成。有 5人会用第一种方法完成,另有4人会用第二种方法完成。选出一个人来完成这件工作,共有多少种选法?
2.在读书活动中,一个学生要从 2本科技书、 2本政治书、 3本文艺书里任选一本,共有多少种不同的选法?
3.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)展开后共有多少项?
4.从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通。从甲地到丙地共有多少种不同的走法?
5.一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同。
(1)从两个口袋内任取一个小球,有多少种不同的取法?
(2)从两个口袋内各取一个小球,有多少种不同的取法?
作业:
排列
复习基本原理
1.加法原理 做一件事,完成它可以有n类办法,第一类办法中有m1种不同的方法,第二办法中有m2种不同的方法,第n办法中有mn种不同的方法,那么完成这件事共有
N=m1+m2+m3+mn
种不同的方法。
2.乘法原理 做一件事,完成它需要分成n个步骤,做第一 步有m1种不同的方法,做第二步有m2种不同的方法,,做第n步有mn种不同的方法,.那么完成这件事共有
N=m1m2m3mn
种不同的方法。
3.两个原理的区别:
练习1
1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同的机票?
2.由数字1、2、3可以组成多少个无重复数字的二位数?请一一列出。
基本概念
1. 什么叫排列?从n个不同元素中,任取m( )个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列
2. 什么叫不同的排列?元素和顺序至少有一个不同。
3. 什么叫相同的排列?元素和顺序都相同的排列。
4. 什么叫一个排列?
例题与练习
1. 由数字1、2、3、4可以组成多少个无重复数字的三位数?
2.已知a、b、c、d四个元素,①写出每次取出3个元素的所有排列;②写出每次取出4个元素的所有排列。
排列数
1. 定义:从n个不同元素中,任取m( )个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号 表示。
用符号表示上述各题中的排列数。
2. 排列数公式: =n(n-1)(n-2)(n-m+1)
; ; ; ;
计算: = ; = ; = ;
课后检测
1. 写出:
① 从五个元素a、b、c、d、e中任意取出两个、三个元素的所有排列;
② 由1、2、3、4组成的无重复数字的所有3位数。
③ 由0、1、2、3组成的无重复数字的所有3位数。
2. 计算:
① ② ③ ④ 排 列
一、复习:(引导学生对上节课所学知识进行复习整理)
1.排列的定义,理解排列定义需要注意的几点问题;
2.排列数的定义,排列数的计算公式
或 (其中mn m,nZ)
3.全排列、阶乘的意义;规定 0!=1
4.分类、分步思想在排列问题中的应用。
二、新授:
例1:⑴ 7位同学站成一排,共有多少种不同的排法?
解:问题可以看作:7个元素的全排列 =5040
⑵ 7位同学站成两排(前3后4),共有多少种不同的排法?
解:根据分步计数原理:7654321=7!=5040
⑶ 7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?
解:问题可以看作:余下的6个元素的全排列 =720
⑷ 7位同学站成一排,甲、乙只能站在两端的排法共有多少种?
解:根据分步计数原理:第一步 甲、乙站在两端有 种;第二步 余下的5名同学进行全排列有 种 则共有 =240种排列方法
⑸ 7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?
解法一(直接法):第一步 从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有 种方法;第二步 从余下的5位同学中选5位进行排列(全排列)有 种方法 所以一共有 =2400种排列方法。
解法二:(排除法)若甲站在排头有 种方法;若乙站在排尾有 种方法;若甲站在排头且乙站在排尾则有 种方法。所以甲不能站在排头,乙不能排在排尾的排法共有 - + =2400种。
小结一:对于在与不在的问题,常常使用直接法或排除法,对某些特殊元素可以优先考虑。
例2 : 7位同学站成一排。
⑴甲、乙两同学必须相邻的排法共有多少种?
解:先将甲、乙两位同学捆绑在一起看成一个元素与其余的5个元素(同学)一起进行全排列有 种方法;再将甲、乙两个同学松绑进行排列有 种方法。所以这样的排法一共有 =1440
⑵甲、乙和丙三个同学都相邻的排法共有多少种?
解:方法同上,一共有 =720种。
⑶甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?
解法一:将甲、乙两同学捆绑在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有 种方法;将剩下的4个元素进行全排列有 种方法;最后将甲、乙两个同学松绑进行排列有 种方法。所以这样的排法一共有 =960种方法。
解法二:将甲、乙两同学捆绑在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有2 种方法,所以丙不能站在排头和排尾的排法有 种方法。
解法三:将甲、乙两同学捆绑在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有 种方法,再将其余的5个元素进行全排列共有 种方法,最后将甲、乙两同学松绑,所以这样的排法一共有 =960种方法。
小结二:对于相邻问题,常用捆绑法(先捆后松).
例3: 7位同学站成一排。
⑴甲、乙两同学不能相邻的排法共有多少种?
解法一:(排除法) 解法二:(插空法)先将其余五个同学排好有 种方法,此时他们留下六个位置(就称为空吧),再将甲、乙同学分别插入这六个位置(空)有 种方法,所以一共有 种方法。
⑵甲、乙和丙三个同学都不能相邻的排法共有多少种?
解:先将其余四个同学排好有 种方法,此时他们留下五个空,再将甲、乙和丙三个同学分别插入这五个空有 种方法,所以一共有 =1440种。
小结三:对于不相邻问题,常用插空法(特殊元素后考虑).
三、小结:
1.对有约束条件的排列问题,应注意如下类型:
⑴某些元素不能在或必须排列在某一位置;
⑵某些元素要求连排(即必须相邻);
⑶某些元素要求分离(即不能相邻);
2.基本的解题方法:
⑴ 有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优限法);
⑵ 某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为捆绑法
⑶ 某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为插空法
⑷ 在处理排列问题时,一般可采用直接和间接两种思维形式,从而寻求有效的解题途径,这是学好排列问题的根基。
四、作业:《课课练》之排列 课时13
课题:排列的简单应用(2)
目的:使学生切实学会用排列数公式计算和解决简单的实际问题,进一步培养分析问题、解决问题的能力,同时让学生学会一题多解。
过程:
一、复习:
1.排列、排列数的定义,排列数的两个计算公式;
2.常见的排队的三种题型:
⑴某些元素不能在或必须排列在某一位置优限法;
⑵某些元素要求连排(即必须相邻)捆绑法;
⑶某些元素要求分离(即不能相邻)插空法。
3.分类、分布思想的应用。
二、新授:
示例一: 从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?
解法一:(从特殊位置考虑) 解法二:(从特殊元素考虑)若选: 若不选:
则共有 + =136080
解法三:(间接法) 136080
示例二:
⑴ 八个人排成前后两排,每排四人,其中甲、乙要排在前排,丙要排在后排,则共有多少种不同的排法?
略解:甲、乙排在前排 ;丙排在后排 ;其余进行全排列 .
所以一共有 =5760种方法。
⑵ 不同的五种商品在货架上排成一排,其中a, b两种商品必须排在一起,而c, d两种商品不排在一起, 则不同的排法共有多少种?
略解:(捆绑法和插空法的综合应用)a, b捆在一起与e进行排列有 ;
此时留下三个空,将c, d两种商品排进去一共有 ;最后将a, b松绑有 .所以一共有 =24种方法。
⑶ 6张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的坐法有多少种?
略解:(分类)若第一个为老师则有 ;若第一个为学生则有
所以一共有2 =72种方法。
示例三:
⑴ 由数字1,2,3,4,5可以组成多少个没有重复数字的正整数?
略解: ⑵ 由数字1,2,3,4,5可以组成多少个没有重复数字,并且比13 000大的正整数?
解法一:分成两类,一类是首位为1时,十位必须大于等于3有 种方法;另一类是首位不为1,有 种方法。所以一共有 个数比13 000大。
解法二:(排除法)比13 000小的正整数有 个,所以比13 000大的正整数有 =114个。
示例四: 用1,3,6,7,8,9组成无重复数字的四位数,由小到大排列。
⑴ 第114个数是多少? ⑵ 3 796是第几个数?
解:⑴ 因为千位数是1的四位数一共有 个,所以第114个数的千位数应该是3,十位数字是1即31开头的四位数有 个;同理,以36、37、38开头的数也分别有12个,所以第114个数的前两位数必然是39,而3 968排在第6个位置上,所以3 968 是第114个数。
⑵ 由上可知37开头的数的前面有60+12+12=84个,而3 796在37开头的四位数中排在第11个(倒数第二个),故3 796是第95个数。
示例五: 用0,1,2,3,4,5组成无重复数字的四位数,其中
⑴ 能被25整除的数有多少个?
⑵ 十位数字比个位数字大的有多少个?
解: ⑴ 能被25整除的四位数的末两位只能为25,50两种,末尾为50的四位数有 个,末尾为25的有 个,所以一共有 + =21个。
注: 能被25整除的四位数的末两位只能为25,50,75,00四种情况。
⑵ 用0,1,2,3,4,5组成无重复数字的四位数,一共有 个。因为在这300个数中,十位数字与个位数字的大小关系是等可能的,所以十位数字比个位数字大的有 个。
三、小结:能够根据题意选择适当的排列方法,同时注意考虑问题的全面性,此外能够借助一题多解检验答案的正确性。
四、作业:3+X之 排列 练习
组 合 ⑴
课题:组合、组合数的概念
目的:理解组合的意义,掌握组合数的计算公式。
过程:
一、复习、引入:
1.复习排列的有关内容:
定 义特 点相同排列公 式
排 列
以上由学生口答。
2.提出问题:
示例1: 从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?
示例2: 从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?
引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序排列,而示例2只要求选出2名同学,是与顺序无关的。
引出课题:组合问题。
二、新授:
1.组合的概念:一般地,从n个不同元素中取出m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
注:1.不同元素 2.只取不排无序性 3.相同组合:元素相同
判断下列问题哪个是排列问题哪个是组合问题:
⑴ 从A、B、C、D四个景点选出2个进行游览;(组合)
⑵ 从甲、乙、丙、丁四个学生中选出2个人担任班长和团支部书记。(排列)
2.组合数的概念:从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 表示。
例如:示例2中从3个同学选出2名同学的组合可以为:甲乙,甲丙,乙丙。即有 种组合。
又如:从A、B、C、D四个景点选出2个进行游览的组合:AB,AC,AD,BC,BD,CD一共6种组合,即: 在讲解时一定要让学生去分析:要解决的问题是排列问题还是组合问题,关键是看是否与顺序有关。那么又如何计算 呢?
3.组合数公式的推导
⑴提问:从4个不同元素a,b,c,d中取出3个元素的组合数 是多少呢?
启发: 由于排列是先组合再排列,而从4个不同元素中取出3个元素的排列数 可以求得,故我们可以考察一下 和 的关系,如下:
组 合 排列
由此可知:每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数 ,可以分如下两步:① 考虑从4个不同元素中取出3个元素的组合,共有 个;② 对每一个组合的3个不同元素进行全排列,各有 种方法。由分步计数原理得: = ,所以: .
⑵ 推广: 一般地,求从n个不同元素中取出m个元素的排列数 ,可以分如下两步:① 先求从n个不同元素中取出m个元素的组合数 ;② 求每一个组合中m个元素全排列数 ,根据分布计数原理得: = ⑶ 组合数的公式:
或 ⑷ 巩固练习:
1.计算:⑴ ⑵ 2.求证: 3.设 求 的值。
解:由题意可得: 即:24
∵ x=2或3或4
当x=2时原式值为7;当x=3时原式值为7;当x=2时原式值为11.
所求值为4或7或11.
4.例题讲评
例1. 6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分
法?
略解: 例名男生和6名女生组成至少有1个男生参加的三人实践活动小组,问组成方法共有多少种?
解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有 , , ,所以一共有 + + =100种方法。
解法二:(间接法) 5.学生练习:(课本99练习)
三、小结:
定 义特 点相同组合公 式
排 列
组 合
此外,解决实际问题时首先要看是否与顺序有关,从而确定是排列问题还是组合问题,必要时要利用分类和分步计数原理。
四、作业:课堂作业:教学与测试75课
课外作业:课课练 课时7和8
组 合 ⑵
课题:组合的简单应用及组合数的两个性质
目的:深刻理解排列与组合的区别和联系,熟练掌握组合数的计算公式;掌握组合数的两个性质,并且能够运用它解决一些简单的应用问题。
过程:
一、复习回顾:
1.复习排列和组合的有关内容:
强调:排列次序性;组合无序性。
2.练习一:
练习1:求证: . (本式也可变形为: )
练习2:计算:① 和 ; ② 与 ;③ 答案:① 120,120 ② 20,20 ③ 792
(此练习的目的为下面学习组合数的两个性质打好基础。)
3.练习二:
⑴ 平面内有10个点,以其中每2个点为端点的线段共有多少条?
⑵ 平面内有10个点,以其中每2个点为端点的有向线段共有多少条?
答案:⑴ (组合问题) ⑵ (排列问题)
二、新授:
1.组合数的 性质1: .
理解: 一般地,从n个不同元素中取出m个元素后,剩下n - m个元素。因
为从n个不同元素中取出m个元素的每一个组合,与剩下的n - m个元素的每一个组合一一对应,所以从n个不同元素中取出m个元素的组合数,等于从这n个元素中取出n - m个元素的组合数,即: .在这里,我们主要体现:取法与剩法是一一对应的思想。
证明:∵ 又 注:1 我们规定 2 等式特点:等式两边下标同,上标之和等于下标。
3 此性质作用:当 时,计算 可变为计算 ,能够使运算简化。
例如: = = =2002.
4 或 2.示例一:(课本101例4)一个口袋内装有大小相同的7个白球和1个黑球。
⑴ 从口袋内取出3个球,共有多少种取法?
⑵ 从口袋内取出3个球,使其中含有1个黑球,有多少种取法?
⑶ 从口袋内取出3个球,使其中不含黑球,有多少种取法?
解:⑴ ⑵ ⑶ 引导学生发现: .为什么呢?
我们可以这样解释:从口袋内的8个球中所取出的3个球,可以分为两类:一类含有1个黑球,一类不含有黑球。因此根据分类计数原理,上述等式成立。
一般地,从 这n+1个不同元素中取出m个元素的组合数是 ,这些组合可以分为两类:一类含有元素 ,一类不含有 .含有 的组合是从 这n个元素中取出m -1个元素与 组成的,共有 个;不含有 的组合是从 这n个元素中取出m个元素组成的,共有 个。根据分类计数原理,可以得到组合数的另一个性质。在这里,我们主要体现从特殊到一般的归纳思想,含与不含其元素的分类思想。
3.组合数的 性质2: = + .
证明:
= + .
注:1 公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与高的相同的一个组合数。
2 此性质的作用:恒等变形,简化运算。在今后学习二项式定理时,我们会看到它的主要应用。
4.示例二:
⑴ 计算: ⑵ 求证: = + + ⑶ 解方程: ⑷ 解方程: ⑸ 计算: 和 推广: 5.组合数性质的简单应用:
证明下列等式成立:
⑴ (讲解) ⑵ (练习) ⑶ 6.处理《教学与测试》76课例题
三、小结:1.组合数的两个性质;
2.从特殊到一般的归纳思想。
四、作业: 课堂作业:《教学与测试》76课
课外作业:课本习题;课课练课时9
组 合 ⑶
课题:组合、组合数的综合应用⑴
目的:进一步巩固组合、组合数的概念及其性质,能够解决一些较为复杂的组合应用问题,提高合理选用知识的能力。
过程:
一、知识复习:
1.复习排列和组合的有关内容:
依然强调:排列次序性;组合无序性。
2.排列数、组合数的公式及有关性质
性质1: 性质2: = + 常用的等式: 3.练习:处理《教学与测试》76课例题
二、例题评讲:
例件产品中有合格品90件,次品10件,现从中抽取4件检查。
⑴ 都不是次品的取法有多少种?
⑵ 至少有1件次品的取法有多少种?
⑶ 不都是次品的取法有多少种?
解:⑴ ;
⑵ ;
⑶ .
例2.从编号为1,2,3,,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法?
解:分为三类:1奇4偶有 ;3奇2偶有 ;5奇1偶有 所以一共有 + + .
例3.现有8名青年,其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻
译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?
解:我们可以分为三类:
① 让两项工作都能担任的青年从事英语翻译工作,有 ;
② 让两项工作都能担任的青年从事德语翻译工作,有 ;
③ 让两项工作都能担任的青年不从事任何工作,有 .
所以一共有 + + =42种方法。
例4.甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表 ?
解法一:(排除法) 解法二:分为两类:一类为甲不值周一,也不值周六,有 ;另一类为甲不值周一,但值周六,有 .所以一共有 + =42种方法。
例本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?
解:第一步从6本不同的书中任取2本捆绑在一起看成一个元素有 种方法;第二步将5个不同元素(书)分给5个人有 种方法。根据分步计数原理,一共有 =1800种方法。
变题1:6本不同的书全部送给5人,有多少种不同的送书方法?
变题2: 5本不同的书全部送给6人,每人至多1本,有多少种不同的送书方法?
变题3: 5本相同的书全部送给6人,每人至多1本,有多少种不同的送书方法?
答案:1. ; 2. ; 3. .
三、小结:1.组合的定义,组合数的公式及其两个性质;
2.组合的应用:分清是否要排序。
四、作业:《3+X》 组合基础训练
《课课练》课时10 组合四
组 合 ⑷
课题:组合、组合数的综合应用⑵
目的:对排列组合知识有一个系统的了解,掌握排列组合一些常见的题型及解题方法,能够运用两个原理及排列组合概念解决排列组合问题。
过程:
一、知识复习:
1.两个基本原理;
2.排列和组合的有关概念及相关性质。
二、例题评讲:
例本不同的书,按下列要求各有多少种不同的选法:
⑴ 分给甲、乙、丙三人,每人两本;
⑵ 分为三份,每份两本;
⑶ 分为三份,一份一本,一份两本,一份三本;
⑷ 分给甲、乙、丙三人,一人一本,一人两本,一人三本;
⑸ 分给甲、乙、丙三人,每人至少一本。
解:⑴ 根据分步计数原理得到: 种。
⑵ 分给甲、乙、丙三人,每人两本有 种方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有x种方法;第二步再将这三份分给甲、乙、丙三名同学有 种方法。根据分步计数原理可得: ,所以 .因此分为三份,每份两本一共有15种方法。
注:本题是分组中的均匀分组问题。
⑶ 这是不均匀分组问题,一共有 种方法。
⑷ 在⑶的基础上在进行全排列,所以一共有 种方法。
⑸ 可以分为三类情况:①2、2、2型即⑴中的分配情况,有 种方法;②1、2、3型即⑷中的分配情况,有 种方法;③1、1、4型,有 种方法。所以一共有90+360+90=540种方法。
例2.身高互不相同的7名运动员站成一排,甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?
解:(插空法)现将其余4个同学进行全排列一共有 种方法,再将甲、乙、丙三名同学插入5个空位置中(但无需要进行排列)有 种方法。根据分步计数原理,一共有 =240种方法。
例3.⑴ 四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?
⑵ 四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?
解:⑴ 根据分步计数原理:一共有 种方法。
⑵(捆绑法)第一步从四个不同的小球中任取两个捆绑在一起看成一个元素有 种方法,第二步从四个不同的盒取其中的三个将球放入有 种方法。所以一共有 =144种方法。
例4.马路上有编号为1,2,3,,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?
解:(插空法)本题等价于在7只亮着的路灯之间的6个空档中插入3只熄掉的灯,故所求方法总数为 种方法。
例5.九张卡片分别写着数字0,1,2,,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数?
解:可以分为两类情况:① 若取出6,则有 种方法;②若不取6,则有 种方法。根据分类计数原理,一共有 + =602种方法。
三、小结: