椭圆的教学反思精编4篇
【导言】此例“椭圆的教学反思精编4篇”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
椭圆的教学反思【第一篇】
学习内容:椭圆工具和曲线工具的使用
反思:说来惭愧,今天上课前我没有进行认真的备课。只是大概看了一下学习内容,就这么“大胆”的走进了课堂,面对孩子们求知的眼睛,我有些惭愧,可是还是在给自己找借口——最近太忙了、太累了。
成人的第一课——摈弃一切借口,这是今天我给自己的约定,任何事情都没有我面对孩子们求知的眼睛来得重要。
上节课,学生已初步认识了椭圆和曲线工具,并用此工具画了气球,这节课,为了帮学生加强这两种工具的使用,我给学生出了几个绘画题目:气球、太阳、荷叶。孩子们很有兴趣的进行了绘画的创作,三(5)班同学在这方面发挥的非常不错,整体表现较好,但课堂气氛不如三(4)班,回答问题的积极性也没有三(4)班好,究竟是什么原因呢,为什么没有人愿意去说去表达呢,其一是我的问题设计不好,还有呢,有待观察发现。
须改进的地方:走进孩子,多认识,了解一些孩子,并和他们做朋友。
课堂评价方式有待改进,不能仅仅是口头上的表扬,适当进行可见性的鼓励。
是的,平时工作确实很忙,忙到我常常忽略了我心底的声音,加油lulu,上好每一节课,对得起每一双求知的眼睛,你会做得更好。
椭圆的教学反思【第二篇】
经过连续两年的高三教学工作后,我开始投入到高中数学新课程教学中。平时也研读教材,探讨过新环境下的高中数学教学,但是如何将所学理论应用到实践中,如何落实数学课堂教学实效性,调动广大学生学习数学的积极性,成为我平时数学教学中的一个课题。白板技术的应用,为攻克这一问题增添了催化剂,推动数学课堂逐渐走向动态的课堂。也是我对新课程理念下数学课堂教学的一次很好的反思。
一、让学生的手动起来
这节课存在很大的计算量,如果让学生在课堂进行计算,就会减少思维量,减少解题的数量。如果只做分析,不求解又达不到训练的目的,同时也失去了这一部分内容的特点。为了解决这一问题,我将常规、典型的习题留作学生课前预习题。实践表明,学生很重视这次展示,做得非常认真,达到了预期的目的。学生是学习的主体,学生可以自主完成的内容要大胆放手,让学生亲自解决,从而带来问题解决的成功感。
二、让学生的思维动起来
“数学是思维的体操”。思维永远是由问题开始的,设计适当的问题可激发学生的探索欲望,牵引学生的思维处于活跃状态。要提高提问的有效性,有效提问是课堂对话的开端,它能引起学生的思维、兴趣的激发一堂有实效的数学课应让学生的思维得到广度,深度的发展。这节课是直线与椭圆位置关系的复习,但仅停留在这一层面,学生的思维开阔不起来。为了促进学生思维的纵深发展,我设计了让学生类比直线与椭圆位置关系探究直线与双曲线位置关系。学生通过探究即找到了共性的方法又发现了差异的所在。在解决椭圆中点弦问题时,让学生主动去比较曾做过的双曲线的中点弦的问题。只有让学生自己去体验,感受,发现知识的发生,发展的过程,领略数学知识的联系、丰富,且富于变化的一面,才有利于学生掌握数学知识,更有利于激发学生学习数学的热情,为学生树立数学发展过程的数学思想。
三、教师的设计动起来
以往数学教学一根粉笔讲到底,缺少生动性,很难让数学课堂动起来。如今白板技术的应用,能给学生提供数学动态的演示过程。在整合直线与椭圆位置关系时,我应用白板轻松的将直线动起来。让学生切身的体会到位置关系的变化,充分体现了数形结合思想。教师对问题的设计体现于问题的呈现方式。好的问题呈现方式对问题的求解,学生思维的拓展能起到事半功倍的作用。在探究直线与双曲线位置关系的判定时,我采用了连线题的形式,将直线方程与椭圆方程,直线方程与双曲线方程分别联立后消去y得到关于x的方程,让学生区分哪个是椭圆的,哪个是双曲线的。让学生发现不同,进一步探究产生不同的原因,再去探究直线与双曲线位置关系的判定方法。在探究“点差法”求中点弦问题应注意的事项时,我设计了“找不足”的问题。让学生找错,改错,最后应用几何画板演示轨迹,让学生切身经历发现,分析,解决的过程。学习始于疑问,通过适当的问题情境,引出需要研究的数学问题,然后通过观察,思考,猜想,探究等活动,引导学生发现问题,提出问题,通过亲身实践,主动思维,积极参与,经历不断地从具体到抽象,从特殊到一般的抽象概括活动来理解和掌握数学基础知识,打下坚实的数学基础。
动态的数学课堂教学,给学生创设了的思维、情感发展的空间。但本节课仍存在很多不足之处和需要改进的问题。教学中能关注到学生情感变化,但安慰,鼓励的语言没能跟上,在对学生进行评价时应要丰富自己的语言。应用电子技术的能力有待进一步熟练。在真正解放学生,让学生成为数学课堂的真正的主人上力度还不够。学生能总结的,能发现的,而在教学时无意中又抢了学生的角色。所以今后要进一步提高认识,在平时课堂上尽量多地放手让给学生去做、去活动、去完成,让学生体会到他们是学习的主体。进而完成知识的转化,变书本的知识、老师的知识成为自己的知识。
椭圆的教学反思【第三篇】
椭圆的简单几何性质的重点是性质,难点是应用。椭圆的简单几何性质的知识是解析几何中一个重要内容,是训练学生逻辑思维,发展空间想像能力,提高分析和解决问题能力等的又一重要素材。 新课开始,先复习椭圆定义和方程,然后结合图形观察分析得出椭圆有性质(范围、对称性、顶点、离心率、准线)。
当然,要真正掌握性质并灵活应用,适当的训练是必不可少的。由于椭圆的简单几何性质安排了六节数学课,还有足够的时间来开展反馈环节。课本后面的练习及习题比较多,其中习题的第5题及9题难度较大。对于比较简单的习题,基本上由学生独立完成,当然学生解题的时间必须要保证。而对于比较难的第5及9题,采取创设问题情境,注重启发艺术,体现“低起点、小步子、及时反馈”的教学原则,让尽可能多的学生思维和积极性得到最大的挑战和提高。当然,教学永远是一门遗憾的艺术,教学境界是无止境的,“启而不发,引而不导”是一个不断完善的操作过程。
对于习题的教学,如何提升习题的潜在价值,如何让学生得到最大的收获,这是我们每天面对和思考的焦点。在教学过程中几乎花了一节课的时间开展习题教学,由于自己一直担心时间的紧张,学生的主体性没有得到有效体现,进而数学思维及能力缺少了锤炼的机会。这部分的缺陷,将在今后的教学中找时间来给学生补上,不过这是在教学中应注意的,将要要求自己在今后的教学中尽量做到最好。
椭圆的教学反思【第四篇】
20xx年xx月,我在江苏连云港新海高中上了一节《椭圆的几何性质》公开课。这节课 从准备,到与组内老师探讨、交流,并修改、上课,直至最后聆听各位老师和专家的 指导,都让我受益匪浅。
本节课是苏教版普通高中课程标准实验教科书《数学》选修1—1第二章第二节的内容,它是在学完椭圆的标准方程的基础上,通过研究椭圆的标准方程来探究椭圆的简单几何性质。利用曲线方程研究曲线的性质,是解析几何的主要任务。 通过本节课的学习,既让学生了解了椭圆的几何性质,又让学生初步体会了利用曲线方程来研究其性质的过程,同时也为下一步学习双曲线和抛
物线的性质做好了铺垫。本节课是围绕着探究椭圆的简单几何性质进行的。因此,依教材的地位与作用及教学目标,将之确定为本节课的重点;又因为学生第一次系统地按照椭圆方程来研究椭圆的简单几何性质,学生感到困难,且如何定义离心率,学生感到棘手,所以我将之确定为本节课的难点。
然而,课后的反思过程中我发现了几个问题:第一,在讲解"顶点"定义时,单纯定义为椭圆与坐标轴的交点,没把握住顶点的重要特征,即"顶点是椭圆与其对称轴的交点",如果把握住这一点,在讲解时就应先讲"对称性",再讲"顶点";二是本节课对几何性质的导入,是由学生回顾上节所讲特征三角形的三边与的大小关系开始的,而多数人对特征三角形的记忆是很模糊的,上节课在这个知识点上学生吸收的并不好,如果把它放在本节课"顶点"之后再讲解,会显得更自然一些;三是"对称性"的讲解过于单薄,学生既然很快就观察出了这个性质,何不趁热打铁,再从代数的角度证明一下呢?过于避重就轻的做法不利于对学生数学思维能力的培养。以上的`几点不足都提醒我今后要在研究教材上下更多的功夫。
还有在讲解完"对称性"、准备讲"离心率"之前,我穿插了一道"画椭圆的简图"的题目。并提圆相似吗?椭圆呢?引起了同学们注意。这道题起到了较好的承上启下的作用:既巩固了刚学的性质,又引发了一个问题:椭圆的"扁"的程度与哪些要素有关。大多数学生通过所画的两个椭圆长轴相同、短轴不同,从而"扁"的程度不同,很自然地回答这与有关,圆的形状是完全相同的,而椭圆的形状是否完全相同?如何刻画椭圆的“圆扁”度呢?
学生自主探究(预设:可以创造错误认识,a越大越扁?b越大越圆?联想椭圆定义 当2a定时,焦点逐渐靠近顶点,椭圆会怎么样?焦点逐渐靠近中心,又会怎么样?)
切入事先准备好的几何画板展示,固定长轴,移动交点,看变化。 教师通过多媒体展示椭圆随着离心率逐渐接近0越圆而越接近1而越扁的动画
过程。 e越大,椭圆越扁,越小越圆。讲清楚e是一个比值圆扁度用什么刻画? 为什么不b用。 a此外,在以下几个方面我还需要进一步改进:一是课堂的节奏还要稍微慢一点,比如对焦点在轴时椭圆的几个性质的给出,都是师提问生齐答,在这个过程中不少反应慢一点的同学没有足够的时间去思考,被忽略掉了,而如果把这个环节换成小组合作学习、讨论交流的方式来进行,放手把主动权交给学生,效果可能会更好,也更符合新课改的理念。二是教学语言还需要不断锤炼,因为数学老师的语言是否准确、精炼,会对学生的逻辑思维产生潜移默化的影响,要力图用清晰优美的语言艺术去感染学生。
比较过去自己曾经历过的刻板、严肃的灌输式教学,现在更提倡多给学生一点爱,让学生积极地参与到课堂活动中来;同时老师要做有效课堂的引导者,不断优化教学策略,教学中要关注学生是否积极地参与到发现问题、分析问题、解决问题的探索过程中去,是否能够达到掌握知识,提高能力的目的是否收到了理想的教学效果。教学过程中要尊重学生的自我发现,多角度的给学生以鼓励和肯定。
我会以此为契机,在平日的教学实践中不断思考和创新,不断成长和进步!