首页 > 学习资料 > 初中教案 >

初中数学精编教案最新5篇

网友发表时间 3081945

【阅读指引】阿拉题库网友为您分享整理的“初中数学精编教案最新5篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

初中数学优秀教案【第一篇】

一、教材分析

(一)教材地位

这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)教学目标

知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。

过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。

情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。

(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

教学难点:用面积法(拼图法)发现勾股定理。

突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。

二、教法与学法分析:

学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力。他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强。

教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。

学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。

三、教学过程设计

1、创设情境,提出问题

2、实验操作,模型构建

3、回归生活,应用新知

4、知识拓展,巩固深化

5。感悟收获,布置作业

(一)创设情境提出问题

(1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树20xx年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。

(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6。5米长的云梯,如果梯子的底部离墙基的距离是2、5米,请问消防队员能否进入三楼灭火?

设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。

(二)实验操作模型构建

1、等腰直角三角形(数格子)

2、一般直角三角形(割补)

问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?

设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。

问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)

设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。

通过以上实验归纳总结勾股定理。

设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊——一般的认知规律。

(三)回归生活应用新知

让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。

四、知识拓展巩固深化

基础题,情境题,探索题。

设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。

基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?

设计意图:这道题立足于双基。通过学生自己创设情境,锻炼了发散思维。

情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?

设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。

探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。

设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。

五、感悟收获布置作业:

这节课你的收获是什么?

作业:

1、课本习题

2、搜集有关勾股定理证明的资料。

初中数学优秀教案【第二篇】

教学目的

1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

2.使学生会列一元一次方程解决一些简单的应用题。

3.会判断一个数是不是某个方程的解。

重点、难点

1.重点:会列一元一次方程解决一些简单的应用题。

2.难点:弄清题意,找出“相等关系”。

教学过程

一、复习提问

一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

解:设小红能买到工本笔记本,那么根据题意,得

=6

因为×5=6,所以小红能买到5本笔记本。

二、新授:

问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆? (让学生思考后,回答,教师再作讲评)

算术法:(328-64)÷44=264÷44=6(辆)

列方程:设需要租用x辆客车,可得。

44x+64=328 (1)

解这个方程,就能得到所求的结果。

问:你会解这个方程吗?试试看?

问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

通过分析,列出方程:13+x=(45+x)

问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

因为左边=右边,所以x=3就是这个方程的解。

这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

三、巩固练习

教科书第3页练习1、2。

四、小结。

本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

五、作业 。

教科书第3页,习题第1、3题。

初中数学试卷讲评优秀教案【第三篇】

一、《相交线》是义务教育课程标准实验教材人教版第五章第一节的内容。教学要求了解对顶角与邻补角的概念,能从图中辨认对顶角与邻补角;知道“对顶角相等”;了解“对顶角相等”的说理过程。重点是对顶角的概念,“对顶角相等”的性质,难点是“对顶角相等”的探究过程。为完成教学任务,不遗漏一个知识细节,我按课程标准要求,挖掘教材、精心设计教学过程,力求完美解决每个问题。在第一个教学办上这节课,学生在教师的引导下,点点击破每个知识点,在下课铃声响起时,正好完成本节课教学任务。到了第二个教学班授同一节内容时,由于在第一个教学班教师从上课给学生一个一个知识点的引导讲解,不停地提问、解答,感觉很累,便换一种方式,让学生先自学本节内容,然后教师让学生谈自学的收获,同学们互相补充、交流探讨,教师只是强调了重点、点拨难点,在下课也顺利完成了本节课的任务,学生学习的效果很好,只是教师讲的少、轻松多了。

课后反思:同一教学内容,采用不同的教学方式,带来的是不同的情感体验。第一节课我为追求完美的教学效果,以教师引导讲解为主,学生跟着教师解决一个问题,紧接着又一个新问题的提出,一堂课下来,教师从头说到尾,学生接受命令式的跟着听到尾,虽然也完成了教学任务,但教师感觉很累,学生也有点被迫无奈。第二节课,因教师累想休息而换一种方式,让学生自学、谈收获、体会,教师只点拨难点,同样完成教学任务,不同的学生还讲出了不同的收获,更重要的是学生积极主动参与了获取知识的过程。对比这两节课,才发现自主学习不是教师引导学生圈套式的学,而是教师要给学生足够的空间,让学生用自己的方式去设计并通过不断反思和修正来发现,而教师在课堂中的作用是对学生进行有效的指导,帮助学生形成科学概念,培养科学探究的方法、态度和习惯等等。

二、本节课的不足之处本节课,我的教学设想基本转化成课堂教学行为。

1、在提出问题的时候,学生的思考时间较少,只有程度较好的学生思考出来,大部分学生都还在思考中。

2、欠缺对“学困生”的关注,我也没能用更好的语言激发他们。

3、没能让每位学生都有足够的时间发表自己的观点。

4、没能进行很好的知识延伸和拓展。

5、合作探究的题目有一定的难度,大多数学生还是没能研究出结果。

我想:在以后实际工作中,要时刻牢记这句话,多学习别人的长处,克服不足之处,使自己的水平再迈上一个台阶。

初中数学优秀教案【第四篇】

教学目标:

知识与技能:会用计算器进行数的加、减、乘、除、乘方运算。

过程与方法:了解计算器的性能,并会操作和使用,能运用计算器进行较为复杂的运算。

情感态度与价值观:使学生能运用计算器探索一些有趣的数学规律。

教学重点:用计算器进行数的加、减、乘、除、乘方的运算。

教学难点:能用计算器进行数的乘方的运算。

教材分析:在日常生活中,经常会出现一些较为复杂的混合运算,这就要求使用科学计算器。因此,使学生会用计算器进行数加、减、乘、除、乘方的运算就成为本节的重点和难 点。

教学方法:师生互动法。

课时安排:1课时。

教具:Powerpoint幻灯片、科学计算器。

环节 教 师 活 动 学 生 活 动 设 计 意 图

创设情境 一、从问题情境入手,揭示课题。

(出示幻灯一)

在棋盘上放米,第一格放1粒米,第二格放2粒米,第三格放22粒米,然后是23粒、24粒、25粒……一直到64格,你能计算第64格应放多少粒米?有简单的计算方法吗

教师对学生的回答给予点评,并带着问题引入本节课题:

板书:3.4 用计算器进行数的计算 在教师的引导下,学生仔细观察、思考,积极回答。 通过师生的相互探讨,使学生认识到学会使用计算器的必要性,并激发学生的 求知欲。

探究活动一 一、 介绍计算器的使用方法。

(出示幻灯二)

B型计算器的面板示意图如下:

教师结合示意图介绍按键的使用方法。

学生根据教师的介绍,使用计算器进行实际操作。 通过训练,使学生掌握计算器 的按键操作,熟悉计算器的程序设计模式。

探究活动二 二、用计算器进行加、减、乘、除、乘方运算

(出示幻灯三)

例1 用计算器求下列各式的值

(1)(-)+(-)

(2)(-)

解:(1)

(-)+(-)=-

学生相互交流,并用计算器进行实际操作。 通过计算,使学生熟悉计算器的用法。

探究活动二 (2)

(-)=-

学生相互交流,并用计算器进行实际操作。

通过计算,使学生会用计算器进行有理数的加、减、乘、除运算。

探究活动二 例2 用计算器计算(精确到)

(-)5

(-)5-

相互讨论,并进行实际操作。 通过计算,使学生会用计算器进行有理数的乘方运算。

探究活动二

例3 用计算器求值

(1)(-6)2(2)-62

解:

思考:

注意观察它们的按键顺序有什么不同?

学生认真观察、讨论,得出结论。

通过对比,使学生能区分两种按键的不同,灵活运用计算器进行计算。

探究活动三 三、随堂练习

(出示幻灯四)

用计算器求值

2 . (-)(-)

3.( -)3

4.-

学生独立操作完成。 通过训练,使学生能熟练地用计算器进行数的运算。

探究活动四 四、实际应用,能力提高。

1.用计算器解决“创设情境”中提出的问题。

(出示幻灯五)

2.张老师在银行贷月息为%的住房 贷款50 000元,满5年时共需付款50 000(1+%)元,其中包括贷款本金和贷款利息。张老师共需付利息多少元? 在教师的引导下,分组讨论,互相交流,回答有关的信息,学生互评。 通过实际应用,进一步提高学生运用计算器解决实际问题的能力。

学习总结 五、学习总结

这节课你有哪些收获?有什么体会?

教师简要点评:

(1)由于受计算器显示数位的限制,计算结果是一个近似数。

(2)当计算结果很大时,计算器能将计算结果自动转化为科学记数法的。形式来显示。

学生相互交流自己的 收获和体会,教师参与互动并给予鼓励 性的评价。 学生自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。

课堂反馈

1.用计算器进行计算(略)

2.(1)用计算器计算下列各式:

1111,111111,1 1111 111,11 11111 111 。

(2)根据 (1)的计算结果,你发现了什么规律?

(3)如果不用计算器,你能直接写出1 111 1111 111 1 11的结果吗? 让学生熟练运用计算器进行操作,学以致用。 及时反馈,并使学生能运用计算器探究一些有趣的数学规律。

附:板书设计:

3.4用计算器进行数的计算

1.介绍计算器的使用方法;

2.运用计算器进行数的运算;

3.运用计算器探究数学规律。

教学反思:

1.只停留在powerpoint的使用上,有一定的局限性,如能演示使用计算器的方法,效果会更好。

2.更新教学观念,最好以学生自学使用计算器的方法为主,使学生主动参与探索,培养学生的创新精神。

3.教师主导课堂,忽视学生的学习主体作用,不利于创新思维及个性化发展。而通过网络或多媒体的教学过程中,往往易忽视教师的作用,过分的 依赖于学习者的主观能动性,教学成本也大幅度提高。

初中数学优秀教案【第五篇】

●教学目标

(一)教学知识点

1.掌握极差、方差、标准差的概念。

2.明白极差、方差、标准差是反映一组数据稳定性大小的。

3.用计算器(或计算机)计算一 组数据的标准差与方差。

(二)能力训练要求

1.经历对数据处理的过程,发展学生初步的统计意识和数据处理能力。

2.根据极差、方差、标准差的大小,解决问题,培养学生解决问题的能力。

(三)情感与价值观要求

1.通过解决现实情境中问题,增强数学素养,用数 学的眼光看世界。

2.通过小组活动,培养学生的合作意识和能力。

●教学重点

1.掌握极差、方差或标准差的概念,明白极差、方差、标准差是刻画数量离散程度的几个统计量。

2.会求一组数据的极差、方差、标准差,并会判断这组数据的稳定性 .

●教学难点

理解方差、标准差的概念,会求一组数据的方差、标准差。

●教学方法

启发引导法

●教学过程

Ⅰ.创设现实问题情景,引入新课

[师]在信息技术不断发展的社会里,人们需要对大量纷繁复杂的信息作出恰当的选择与判断。

当我们为加入“WTO”而欣喜若狂的时刻,为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分。某外贸公司要出口 一批规格为75 g的鸡腿。现有2个厂家提供货源。

[生](1)根据20只鸡腿在图中的分布情况,可知甲、乙两厂被抽取鸡腿的平均质量分别为75 g.

(2)设甲、乙两厂被抽取的鸡腿的平均质量 甲, 乙,根据给出的数据,得

甲=75+ [ 0-1-1+ 1-2+1+0+2+2-1-1+0+0+1-2+1-2+3+2-3]=75+ ×0=75(g)

乙=75+ [0+3-3+2-1+0-2+4-3+ 0+5-4+1+2-2+3-4+1-2+0]=75+ ×0=75(g)

(3) 从甲厂抽取的这20只鸡腿质量的最大值是78 g,最小值是72 g,它们相差78-72=6 g;从乙厂抽取的这20只鸡腿质量的最大值是80 g,最小值是71 g,它们相差80-71=9(g).

(4)如果只考虑鸡腿的规格,我认为外贸公司应购买甲厂的鸡腿,因为甲厂鸡腿规格比较稳定,在75 g左右摆动幅度较小。

[师]很好。在我们的实际生活中,会出现上面的情况,平均值一样,这里我们也关心数据与平均值的离散程度 .也就是说,这种情况下,人们除了关心数据的“平均值”即“平均水平”外,人们往往还关注数据的离散程度,即相对于“平均水平”的偏离情况。

从上图也能很直观地观察出:甲厂相对于“平均水平”的偏离程度比乙厂相对于“平均水平” 的偏离程度小。

这节课我们就来学习关于数据的离散程度的几个量。

Ⅱ.讲授新课

[师]在上面几个问题中,你认为哪一个数值是反映数据的离散程度的一个量呢?

[生]我认为最大值与最小值的差是反映数据离 散程度的一个量。

[师]很正确。我们把一组数据中最大数据与 最小数据的差叫极差。而极差是刻画数据离散程度的一个统计量。

[生](1)丙厂这20只鸡腿质量的平均数:

丙= [75×2+74×4+73×2+72×3+76×3+77×3+78×2+79]=(g)

极差为:79-72=7(g)

[生]在第(2)问中,我认为可以用丙厂这20只鸡腿的质量与其平均数的差的和来刻画这20只鸡腿的质量与其平均数的差距。

甲厂20只鸡 腿的质量与相应的平均数的差距为:

(75-75)+(74-75)+(74-75)+(76-75)+(73-75)+(76-75)+(75-75)+(77-75)+(77-75)+(74-75)+(74-75)+(75-75)+(75-75)+(76-75)+ (73-75)+(76-75)+(73-75)+(78-75)+(77-75)+(72-75)

=0-1-1+1-2+1+0+2+2-1-1+0 +0+1-2+1-2+3+2-3=0;

丙厂20只鸡腿的质量与相应的平均数的差距为:

(75-)+(75-)+(74- )+(74-)+(74-)+(74-)+(73-)+(73-)+(72-)+(72-)+(72-)+(76-)+(76-)+(76-)+(77-) +(77-)+(77-)+(78-)+(78-)+(79-)=0

由此可知不能用各数据与平均数的差的和来衡量这组数据 的波动大小。

数学上,数据的离散程度还可以用方差或标准差来刻画。

其中方差是各个数据与平均数之差的平方的平均数,即

s2= [(x1- )2+(x2- )2+…+(xn- )2]

其中 是x1,x2,…,xn的平均数,s2是 方差,而标准差就是方差的算术平方根。

[生]为什么方差概念中要除以数据个数呢?

[师]是为了消除数据个数的印象。

由此我们知道:一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

[生]极差还比较容易算出。而方差、标准差算起来就麻烦多了。

[师]我们可以使用计算器,它可以很方便地计算出一组数据的标准差与方差,其大体步骤是 ;进入统计计算状态,输入数据,按键就可得出标准差。

同学们可在自己的计算器上探 索计算标准差的具体操作

计算器一般不具有求方差的功能,可以先求出标准差,再平方即可求出方差。

[生]s甲2= [02+1+1+1+4+1+0+4+4+1+1+1+4+1+4+9+4+9]= ×50= =;

s丙2= [++×4+×2+×3+×3+×3+×2+]= ×76 .49=

因为s甲2<s丙2.

所以根据计算的结果,我认为甲厂的产品更符合要求。

Ⅲ.随堂练习

Ⅳ.课时小结

这节课 ,我们着重学习:对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小;描述一组数据的波动大小的量不止一种,最常用的极差、方差、标准差;方差 和标准差既有联系 ,也有区别。

Ⅴ.课后作业

Ⅵ.活动与探究

甲、乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析如下:

(1)请你填上表中乙学生的相关数据;

(2)根据你所学的统计数知识,利用上述某些数据评价甲、乙两人的射击水平。

相关推荐

热门文档

17 3081945