首页 > 学习资料 > 初中教案 >

七年级下册数学教案(精选4篇)

网友发表时间 2110620

【阅读指引】阿拉题库网友为您分享整理的“七年级下册数学教案(精选4篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

七年级数学下册教案【第一篇】

人教版七年级数学下册《平方根》教学设计PPT课件导学案教案

课题: 平方根(1)

教学目标 1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;

2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;

3、通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。

教学难点 根据算术平方根的概念正确求出非负数的算术平方根。

知识重点 算术平方根的概念。

教学过程(师生活动) 设计理念

情境导入 同学们,20xx年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示“神舟”五号飞船升空时的画面).那么,你们知道宇宙飞船离开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度 (米/秒)而小于第二宇宙速度: (米/秒). 、 的大小满足 。怎样求 、 呢?这就要用到平方根的概念,也就是本章的主要学习内容.

这节课我们先学习有关算术平方根的概念.

请看下面的问题.“神舟”五号成功发射和安全着陆,标志着我国在攀登世界科技高峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对

本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是已知

幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路.

提出问题

感知新知 多媒体展示教科书第160页的问题(问题略),然后提出问题:

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值.

练习:教科书第160页的填表. 练习:教科书第160页的填表.这个问题抽象成数学问题

就是已知正方形的面积求正方形的边长,这与学生以前学过的

已知正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。

归纳新知 上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题.实际上是乘方运算中,已知一个数的指数和它的幂求这个数.

一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.

也就是,在等式 =a (x≥0)中,规定x = 。

思考:这里的数a应该是怎样的数呢?

试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来.

想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如 表示25的算术平方根,因为…… 也可以写成 ,读作“二次根号a”。

算术平方根的概念比较抽象,原因之一是学生对石这个新

的符号的理解要有一个过程.通过此问题,使学生对符号“而”表示的具体含义有更具体、更深刻的认识.

应用新知 例.(课本第160页的例1)求下列各数的算术平方根:

(1)100;(2)1;(3) ;(4)

建议:首先应让学生体验一个数的算术平方根应满足怎样的等式,应该用怎样的记号来表示它,在此基础上再求出结果,例如求100的算术平方根,就是求一个数x,使 =100,因为

例题的解答展示了求数的算术平方根的思考过程.在开始阶段,宜让学生适当模仿,熟练后可以直接写出结果.

探究拓展 提出问题:(课本第160页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受 的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.

教科书在边空提出问题“小正方形的对角线的长是多少”,

这是为在10.3节介绍在数轴上画出表示 的点做准备.

小结与作业

课堂小结 提问:1、这节课学习了什么呢?

2、算术平方根的具体意义是怎么样的?

3、怎样求一个正数的算术平方根?

布置作业 3、 必做题:课本第167页习题第1、2、3题;168页第11题。

4、 备选题:

(1)判断下列说法是否正确:

i. 是25的算术平方根;

ii. 一6是 的算术平方根;

iii. 0的算术平方根是0;

iv. 是的算术平方根;

⑤一个正方形的边长就是这个正方形的面积的算术平方根.

(2)下列各式哪些有意义,哪些没有意义?

①- ② ③ ④

(3)一个正方形的面积为10平方厘米,求以这个正方形的边为直径的圆的面积。

在本节的第一个“探究”栏目之前,重点是介绍算术平方根的概念,因此所涉及的数(包括例题中的数)都是完全平方数(能表示成一个有理数的平方),所求的是这些完全平方数的算术平方根.

本课教育评注(课堂设计理念,实际教学效果及改进设想)

本节课是本章的第一节课,主要是要建立算术平方根的概念为了使学生体会引入算

术平方根的`必要性,感受新数(无理数)的产生是实际生活和科学技术发展的需要,也为了激发学生的学习热情,所以章前图的学习不要省略.特别地应提醒学生这里求速度的问题实际上是已知幂和乘方求底数的问题,是一个新的数学问题.

通过一个简单的实际问题,引人算术平方根的概念对学生来说是容易接受并有兴趣

的.教学中要注意算术平方根的非负性,对它的符号的理解与接受要有一个过程,但这也是最重要的,能从根号很自然地联想到算术平方根的意义(应满足的一个等式)这是学好平方根概念的基本保证,所以在例题之前安排了试一试和想一想,教师还可根据学生实际情况进行有关的训练.

通过对两个小正方形拼成一个大正方形的探究活动,一方面是培养学生的动手能力和思维能力,调动学生的学习积极性,另一方面是使学生理解引人算术平方根符号的必要性,明确有些正数的算术平方根不能容易地求得,为下节课的学习做准备.

七年级数学下册教案【第二篇】

恰当的信息技术与初中数学教学深度融合,课堂本着以学生为主体,教师为导体的原则,精心设计情境教学活动,为学生营造自主学习和探索交流的学习环境,活跃学生思维,激发学习兴趣。为提高教学质量,利用现代教育技术手段,采用启发式、讨论式、研究式的教学方法,让学生在自主探究、合作交流中提高学习积极性,培养学生分析问题、解决问题的能力。我以北师大版数学七年级下册《两条直线的位置关系》一课为例,谈谈如何应用101教育PPT引导学生由动手操作到理性思考,由自主探索到合作交流,由生活实际到建立模型解决问题,让学生积累数学活动经验,完成对本节知识的探索与交流。

一、教材分析:

本节是七下第二章相交线、平行线中的第一节,本节主要是了解平面内两条直线的位置关系,由学生动手画出相交线图形,观察图形产生具有特殊位置关系的对顶角的概念和对顶角相等的性质,由此图产生具有特殊数量关系的余角、补角的概念,由生活实例(打台球)引出并推导余角补角性质采用类比的方法,培养学生观察、推理、归纳等能力。

二、学情分析:

学生在小学已经认识了平行线、相交线、角,在七年级上册中,已经对角及其分类有了一定的认识。这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。在前面知识的学习过程中,学生已具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。

基于教材特点与学生情况的分析,为有效开发各层次学生的潜在智能,制定教法、学法如下:

三、教法与学法:

1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,,故选用探究式教学主动学习的教学策略以及动手实践,自主探索,合作交流的重要学习方式。引导学生根据现实生活的经历和体验及收集到的信息来理解理论知识。

2、借用多媒体课件辅助教学,力求使每个学生都能在原有的基础上得到发展,既满足了学生对新知识的强烈探索欲望,又排除学生对几何学习方法的缺乏,和学无所用的顾虑,让他们在学习过程中获得愉快与进步。

四、教学目标:

1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。

2.过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力。

3.情感与态度:激发学生学习数学的兴趣,认识现实生活中蕴含着大量的与数学有关问题,培养学生用数学方法解决问题的能力。

教学重点:对顶角、余角、补角的概念及性质。

教学难点:余角、补角性质的应用。

五、教具准备:

多媒体课件、三角板

六、教学过程设计

新课标指出,数学教学过程是学生在教师指导下的数学学习活动,是师,是教师和学生互动的过程,是师生共同发展的过程。本课时我遵循“开放”的原则,重组教材,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,并创造性地解决问题;通过动手操作、合作交流等方式,为学生构建了有效开放的学习环境。本节课共设计以下环节:第一环节:创设情境、引入课题;第二环节:动手实践、探究新知;第三环节:合作交流,再探新知;第四环节: 联系生活,解决问题;第五环节:学有所思,归纳总结; 第六环节:布置作业,能力延伸。

第一环节 创设情境 引入课题

活动内容一:两条直线的位置关系

教师展示一组生活图片,由学生观察图片,回答问题:

(1)图片中两条直线有哪几种位置关系?

引入课题:《两条直线的位置关系(1)》

出示本节教学目标、重难点。

(2)那么什么叫相交线和平行线呢?

结论:1.一般地,在同一平面内,两条直线的位置关系有两种;相交和平行。

2:定义:若两条直线只有一个公共点,我们称这两条直线为相交线。

在同一平面内,不相交的两条直线叫做平行线。

设计意图:利用生活图片引入课题,让学生体会数学与生活的联系,激发学生学习的兴趣,通过观察总结出同一平面内两条直线的位置关系,经历知识的形成过程中,激发学生学习积极性,从而提高学课堂效率,通过练习加深他们对概念的理解。

赋能路径:学生对平行线、相交线概念的表述不清楚,对于同一平面的重要性理解不到位,应大胆让学生表述,培养学生的语言表达能力,利用101PPT展示空间中两条异面直线存在既不相交也不平行的位置关系,从而更深入地理解同一平面的意义。

第二环节 动手实践 探究新知

动手实践一:

利用101中的几何画板让学生画出:两条直线AB和CD相交于点O。

通过观察图形,小组合作交流,尝试用自己的语言描述对顶角的定义。

赋能路径: 利用多媒体技术让直线CD绕着点O旋转,在旋转过程中发现具有这种位置关系的两角不会随着角度的变化而变化,在利用多媒体出示剪刀模型,随着剪刀的动画,让学生生动形象的理解对顶角相等这一性质,激发学习兴趣,从而突破本节教学重点。

巩固练习:

1、下列各图中,∠1和∠2是对顶角的是( )

2、如图3所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数吗?你能说出所量角是多少度吗?为什么?

设计意图:通过创设生动有趣的活动情景,为学生提供了观察、操作、推理、交流等丰富的活动素材,使学生在自主学习的过程中,学会对顶角的概念及其性质。从而进一步培养学生抽象几何图形进行建模的能力。设计练习主要是检测学生对顶角的概念及其性质的应用的理解程度,体会数学与生活的联系,增加浓郁的学习氛围。

课堂实施情况:利用几何画板建立数学模型,提高学生运用信息技术工具来学习数学的兴趣,增强逻辑推理能力教学目标的完成。学生对于对顶角概念的表述不到位,教师应鼓励学生用自己的语言表述,强调反向延长线,规范语言。讨论对顶角相等这一性质时,教师积极引导,让学生充分思考,再合作交流,最后归纳、总结,让学生经历知识的形成过程。

第三环节 合作交流 、再探新知

利用学生动手操作画出的图形,探究补角、余角定义

补角定义:一般地,如果两个角的和是180°,那么称这两个角互为补角。

余角定义:如果两个角的和是90°,那么称这两个角互为余角。

强调:互余或互补是指两个角,与角的的位置无关

设计意图:在合作交流中,经历知识的形成过程,获得成功的乐趣,锻炼克服困难的意志,建立自信心,可以更好地掌握新知识。

赋能路径:利用几何画板画出的相交线图形,学生通过观察具有补角、余角位置关系的两角给出补角,余角定义,利用多媒体动画展示补角、余角定义与角的位置无关,定义只和两角的和是否是180度或90度有关,让学生更深刻理解补角余角定义,突破本节教学重点。

巩固练习:

问题1:指出下列图中,哪两个角互为余角?哪两个角互为补角

2、图中∠1、∠2、∠3互补吗?

设计意图:据学生活泼好动、争强好胜的心理,设置问题1和问题2可以更好地激发学生的参与意识,在竞争中加深对概念的理解,提升所编题的质量,促进合作交流的意识。

第四环节 联系生活 解决问题

动手实践二 :

打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2,将图—7抽象成图—8,ON与DC交于点O,∠DON=∠CON=90°,∠1=∠2

小组合作交流,解决下列问题:在图—8中

问题1:哪些角互为补角?哪些角互为余角?

问题2:∠3与∠4有什么关系?为什么?

问题3:∠AOC与∠BOD有什么关系?为什么?

归纳:同角或等角的补角相等。

同角或等角的余角相等。

巩固练习:

如图所示, 因为∠1+∠3=180°,∠2+∠3=180°,所以∠1= ,理由是 ________________.

设计意图:通过生动有趣的活动情景,培养学生观察、操作、推理、交流等活动能力,使学生在自主学习的过程中,经历知识形成过程,培养学生抽象几何图形进行建模的能力。通过巩固练习检测学生对余角、补角性质的应用情况。

赋能路径:利用多媒体动画演示打台球进球路径,更生动形象,吸引学生注意力,激发探索知识的欲望,让学生体会数学源于生活并运用于生活,让学生经历怎么把实际问题转化成数学问题,培养建立数学模型的能力,突破难点。

课堂实施效果:对于补角、余角的性质的推导是本节课的难点,教师应积极引导学生列出式子,让学生通过观察表达式得出补角的性质,再通过类比补角性质得出余角的性质。在巩固练习中,理由大部分填对顶角相等,对于补角性质的应用多加练习。

课堂检测:本环节利用多媒体技术设计一个超链接,每组选一道题,根据选题派学生代表回答问题,根据情况得分。

设计意图:本环节是本节课的一个亮点,以小组竞赛的形式完成课堂检测环节,既检测学生对本节重点知识掌握情况,活跃课堂气氛的同时,还培养学生拼搏进取的精神。

赋能路径:教师提前把设计好的练习提前展示在多媒体上,待新课讲完后,以小组竞赛形式出示,学生有小组竞赛的精神,同学们回答问题积极,并且对于回答不具体的同学,同小组同学积极补充,活跃了课堂气氛,启到了很好的教学效果。

第五环节 学有所思 归纳总结

你学到了哪些知识点?

你学到了哪些方法?

你认为还有哪些问题?

设计意图:本环节使学生把知识结构化、网络化,引导学生时刻注意新旧知识之间的联系;鼓励学生畅谈自己学习的知识和体会,激发学生对数学的学习兴趣与信心,培养学生独自梳理知识,归纳学习方法及解题方法的能力,体会与同伴分享成果的快乐过程。

课堂实施情况:学生们积极的对本节知识、学法进行归纳总结,对对不理解的问题课下进行反思。

第六环节 布置作业 能力延伸

基础题:1.习题 第 1,2,3,4,5题

提高题: 2.已知一个角的补角是这个角余角的4倍,求这个角的度数。

3.如图,将一个长方形纸片按如图所示的方式折叠,使点A落在点A’处,点B落在B’处,并且点E,A’,B’在同一条直线上。

问题1:∠FEG等于多少度?为什么?

问题2:∠FEA与∠GEB互余吗?为什么? 问题3:上述折纸的图形中,还有哪些(除直角外外)相等的角?

设计意图:作业应该体现出课堂学习的延续性,因此本节课我也精心设计了一道探究性的题目,实现了作业分层,可以让不同程度的学生都能有不同的收获。

教学效果及推广:

课程标准要求初中学生在操作感知的基础上渗透理性思考,以体现自主学习、合作探究理,而七年级大部分学生的自主探索、合作意识不强,但对数学学习有着较浓厚的兴趣,思维比较开阔,在数学课堂中抓住学生的认知水平,从生活实际出发,培养学生学习兴趣、建立自信,亲身经历知识的形成,不断提高学生的观察、探索,合作、归纳等能力。另外班中还存在相当一部分学习有困难的学生,对于这部分学生应给予更多的关注,通过同桌儿小组学习等方式,让能力较强的学生带动这些学生尽量给能力较弱的学生创造表现的机会,使各层次的学生都能在学习中体验成功。

本课例较好实现了信息技术与传统教学的优势互补,搭建支架帮助学生实现从操作感知到自主探索、合作交流,充分体现学生的主体地位,从而顺应课程改革,提高课堂效率。

课程建设情况:

数学来源于生活,又运用于生活。本课时我遵循“开放”的原则,引导学生从身边熟悉的情境出发,使学生经历从现实生活中抽象出数学模型的过程,激发了学生的学习兴趣,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,体验了知识的形成过程和发现的快乐,并创造性地解决问题,通过动手操作、合作交流等方式,为学生构建了开放有效的学习环境,同时联系生活,融合建模思想,让学生体会学习数学的乐趣。以小组竞赛的形式完成课堂检测,既对本节重点知识进行了考查,活跃了课堂气氛,又培养了学生拼搏进取的精神。

启示:课堂上让学生充分发表自己的见解,从激励学生的角度出发,给予学生一个充分展示自我的舞台。在活动中提高学生与他人合作交流的能力,激发学生的学习兴趣。针对不同的问题,应大胆放手给学生,注意培养学生抽象几何图形的能力,简单合情说理的能力,观察分析的能力,总结归纳的能力等。讨论时,应该留给学生充分的独立思考的时间,注重学生几何语言的培养,对课堂生成的问题,应予以重视,教师可以激励学生课后继续探究,将课内学习延伸到课外,开阔学生的视野。

七年级数学下册教案【第三篇】

教学目标:

1、通过现实情景感受利用有序数对表示位置的广泛性,能利用有序数对来表示位置。

2、让学生感受到可以用数量表示图形位置,几何问题可以转化为代数问题,形成数形结合的意识。

教学重点:理解有序数对的概念,用有序数对来表示位置。

教学难点:理解有序数对是“有序的”并用它解决实际问题,课时安排:1课时

教学过程

一、创设问题情境,引入新课

展示书P105画面并提出问题,在建国50周年的庆典活动中,天安门广场上出现了壮观的背景图案,你知道它是怎么组成的吗?

原来,他们举起不同颜色的花束(如第10排第25列举红花,第28排第30列举黄花)整个方阵就组成了绚丽的背景图章。类似用“第几排第几列”来确定同学的位置,我们在日常生活中经常用的方法。

二、师生共同参于教学活动

(1)影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置观众根据入场券上的“排数”和“号数”准确入座。

师:只给一个数据如“第5号”你能确定某个同学的位置吗?为什么?要确定必须怎样?

生:不能,要确定还必须知道“排数”。

(2)教师书写平面图通知,由学生分组讨论。

今天以下座位的同学放学后参加数学问题讨论:(1,5), (2,4),(4,2),(3,3),(5,6)。

师:你们能明白它的意思吗?

学生通过交流合作后得到共识:规定了两个数所表示的含义后就可以表示座位的位置。

师:请同学们思考以下问题:

①怎样确定你自己的座位的位置?

②排数和列数先后须序对位置有影响吗?

生:通过讨论,交流后得到以下共识:

①可用排数和列数两个不同的数来确定位置。

②排数和列数的先后须序对位置有影响。

(3)让学生的问题都是通过像“9排8号”,第2列第4排,这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义。例如前面的表示“排数”后面的表示“列数”。我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。

(4)在生活中还有用有序数对表示一个位置的例子吗?

学生分组讨论,交流,教师深入小组参与活动,倾听学生的交流,并对学生提供的生活素材给予肯定和鼓励。

例如:人们常用经纬度来表示,地球上的地点

三、巩固练习

让学生完成p46的练习。

四、布置作业

1、课本习题6,1,1。

2、“怪兽吃豆豆”是一种计算机游戏,图中标志表示“怪兽”按图中箭头先后经过的几个位置,如果用(1,2)表示“怪兽”按图中箭头所指路线经过的第3个位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个位置吗?

1 2 3 4 5 6 7 8

五、教后反思

师:谈谈本节课,你有哪些收获?

由同学交流解决问题,教师设疑为以后的学习奠定基础。

七年级数学下册教案【第四篇】

知识讲解

一、本讲主要学习内容

1、代数式的意义

2、列代数式的注意点

3、代数式值的意义

其中列代数式是重点,也是难点。

下面讲述一下这三点知识的主要内容。

1、代数式的意义

用基本的运算符号(包括加、减、乘、除以及后面所要学的乘方、开方)将数及 表示数的字母连接而成的式子叫代数式。单个的数字或字母也叫代数式。如:5,a, 4_, ab, _+2y, , a2等

2、列代数式的注意点

⑴在代数式中出现的乘号“×”,通常写作“· ”或者省略不写。如3×a可写作3· a或3a, 2×(_+y)可以写作2·(_+y)或2(_+y)。

⑵数字与数字相乘时乘号,仍然用“×”,不宜用“· ”,更不能省略不写。

⑶数字写在字母的前面。

⑷在代数式中出现除法运算时,一般按照分数的写法来写, 如s÷t写作 。

⑸代数式中带分数与字母相乘时,应写成假分数与字母相乘的形式,如 应写作 。

(6)两个代数式相乘,应该用分数形式表示。

3、代数式值的意义

用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,就叫做代数式的值。

二、典型例题

例1 填空

①棱长是acm 的正方体的体积是___cm3。

②温度由t°c下降2°c后是___°c。

③产量由m千克增长10%,就达到___千克。

④a和b 的倒数和是___。

⑤a和b的和的倒数是___。

解: ① a3 ②(t-2) ③(1+10%)m ④ ⑤

说明: ⑴列代数式的关键在于仔细审题,弄清题意,正确找出题中的数量关系和运算顺序,对一些容易混淆的说法,要仔细进行对比,对一些比较复杂的数量关系,可先分段考虑,要正确地使用括号。

⑵像a3 ,(1+10%)m 这样的式子后在可直接写单位,像t-2这样的式子,需写单位时,要将整个式子用括号括起来。

例2、用代数式表示

⑴被4整除得 m的数

⑵被2除商为 a余1的数

⑶两数的平均数

⑷a和b两数的平方差与这两数平方和的商

⑸一项工程,甲独做需_天,乙独做需y天完成,甲乙两人合做完成的天数。 ⑹某人先用v1千米/时速度行完全路程的一半,又用v2千米/时的速度行完另一半, 若全路程长为a千米,用代数式表示此人行完全路程的平均速度。

⑺个位数字是8,十位数字是 b 的两位数。

解: ⑴4m ⑵2a+1 ⑶设这两个数分别为a、b、则平均数为 。

⑷ ⑸ ⑹ ⑺10b+8

分析说明:

⑴数a除以数b,除得的商正好是整数,而没有余数,我们称a能被b整除。

⑵能被2整除的数叫偶数,不能被2整除的数叫奇数。两个连续奇数,若较小的是n,则较大的是n +2 。

⑶对于题⑶中两数没有给出,为说明其一般性。可先设这两个数为a, b;用字母表示数时,在同一个问题中,不同的数要用不同的字母表示。

⑷题⑷中的a,b两数的平方是a2-b2,不能颠倒,也不能写成(a-b)2。

⑸题⑸中甲乙两人的工作效率分别是 和 ,所以甲乙两人合作完成的时间是 即 。

⑹平均速度=

所以平均速度为 解答本题容易错写成 ,这主要是概念不清造成的。

题⑺中主要应清楚自然数的十进制表示方法: n=an×10n+an-1×10n-1+……+a1×10+a0 即一个自然数总可以用它各个数位上的数字来表示。

例3说出下列代数式的意义。

⑴ 3a+2 ⑵ 3(a+2) (3)

(4) a- (5)(a-b)2 (6)a2-b2

分析:说出代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点。

①不含括号的代数式习惯从左到右按运算顺序读,如(1)小题3a+2读作“a的3倍与2的和”;

②含括号的代数应该把括号里的代数式看作一个整体,按运算结果来读,如(2)小题3(a+2)读作“a与2的和的3倍”;

③由于分数线具有除法和括号的双重作用,应该把分子与分母看成一个整体来读。

解:(1)a的3倍与2的和;

(2)a与2的和的3倍;

(3)a与b的差除以c的商;

(4)a与b除以c的差;

(5)a与b的差的平方;

(6)a、b的平方差。

例4、当_=7,y=4, z=0时,求代数式_ ( 2_-y+3z)的值。

解:_ (2_-y+3 z)=7×( 2×7-4+3×0)=7×(14-4)=70

说明:⑴由比例题可以看出,求代数式值的一般步骤是:①代入 ②计算⑵在代数式中,数字与字母之间,字母与字母之间的乘号是省略不写的。而当代入数据求值时,都变成了数字相乘,原来省略的乘号“×”应补上。

一周一练

1、选择题

(1)下列各式中,属于代数式的有( )个。

, s= ah, 5× , -y, _-2=y, a-b, 3_>y

a、2 b、3 c、4 d、5

(2)下列代数式,书写正确的是( )

a、2 b、m· n c、 mn d、(m+n)÷2

(3)用代数式表示“a的 乘以b减去c的积”是( )

a、 ab-c b、 a(b-c) c、 a( b-c) d、

(4)用语言叙述代数式 ,表述不正确的是( )

a、比a的倒数小2的数; b、a与2的差的倒数

c、1除以a减去2的商 d、比a小2的数的倒数

2、判断题

⑴n除m用代数式可表示成 ( )

⑵三个连续的奇数,中间一个是n,其余两个分别是n-2和n+2( )

⑶如果n是偶数,则紧跟在n后面的两个连续奇数分别是n+1,n+3( )

3、填空题

⑴每本练习本是元,买a本练习本需__元。

⑵小明有5元钱,买了a支铅笔,每支铅笔是元,则小明还剩__元。

⑶被3整除得n 的数是__。

⑷个位上的数是a,十位上的数是个位上的数的2倍少3的两位数是_。

⑸加工一批零件共m个,乙先加工n个零件后,甲单独再做3天才完成任务,则甲平均每天加工零件__个。

⑹一种小麦磨成面粉后,重量减少数15%, b千克小麦磨成面粉后,面粉的重量是__千克。

⑺一个长方形的长是a,宽是长的 还多1,这个长方形的周长是__

⑻a、b两个码头相距s千米,一轮船从a码头到b码头的速度是a千米/时,返回的速度比从a码头到b码头快2千米/时,这艘船在a,b两码头间往返一次,共需__小时。

4、求下列代数式的值。

⑴ 其中a=2

⑵当 时,求代数式 的值。

5、填表

_

y

_+y

_-y

_y

5

15

6、某班级里男生人数比女生人数的 多16人,男生人数是a,问a的代数式表示:⑴女生人数。 ⑵该班学生总数;当a=25时,求该班学生总数。

相关推荐

热门文档

17 2110620