首页 > 学习资料 > 初中教案 >

八年级数学公开课教案精编2篇

网友发表时间 2412725

【阅读指引】阿拉题库网友为您分享整理的“八年级数学公开课教案精编2篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

八年级数学公开课教案1

一、学生起点分析

学生的知识技能基础:经过本章的学习,学生已掌握了一定的数据处理的方法,会用笔或计算器求一组数据的平均数、中位数和众数,能利用它们解决一些实际问题,并能初步选择恰当的数据代表对数据作出自己的评判。

学生活动经验基础:学生在本章的学习活动中,解决了一些相关的实际问题,获得了从事统计活动所必须的数学方法,形成了动手实践、自主探索、合作交流的学习方式,积累了一些数学探究活动的经验。

二、学习任务分析

本节课的学习任务是:整理归纳本章所学的知识,形成知识网络结构;会用计算器准确地求出一组数据的平均数、中位数和众数,能选择恰当的数据代表对数据作出评判;培养综合运用统计知识解决实际问题的能力,达成有关的情感态度目标。为此,本节课的教学目标是:

1、知识与技能:会用计算器准确地求出一组数据的平均数、中位数和众数。了解平均数、中位数和众数的差别,能选择恰当的数据代表对数据作出评判,并解决实际问题。

2、过程与方法:初步经历调查、统计、分析、研讨等活动过程,在活动发展学生综合运用统计知识解决实际问题的能力。

3、情感与态度:通过本章内容的回顾与思考,培养学生整理归纳知识的方法,逐步养成勤于思考、善于总结的好习惯。

三、教学过程设计

本节课设计了五个教学环节:第一环节:归纳知识结构;第二环节:回顾重点内容;第三环节:综合运用提高;第四环节:课堂小结;第五环节:布置作业。

第一环节:归纳知识结构

内容:本章内容已全部学完,请大家回忆一下,这一章学了哪些内容?这些内容之间有什么联系呢?

留出时间让学生思考、交流、梳理知识,然后师生共同归纳总结出如下知识网络结构图:

目的:引导学生将所学的知识整理归纳,总结出网络结构图,形成知识系统。帮助学生掌握正确的学习方法,养成良好的学习习惯。

注意事项:以上知识的归纳总结要以学生为主体来完成,教师不要包办代替。

第二环节:回顾重点内容[

内容:引导学生根据网络结构图,把重点知识内容再回顾一下:

1、平均数、中位数、众数的概念及举例

一般地,对于n个数x1,x2,…,xn,我们把(x1+x2+…+xn),叫做这n个数的算术平均数,简称平均数。

一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两

个数据的平均数)叫做这组数据的中位数。

一组数据中出现次数最多的`那个数据叫做这组数据的众数。

2、平均数、中位数、众数的特征

(1)平均数、中位数、众数都是表示一组数据“平均水平”的特征数。

(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。

(3)中位数的计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。当一组数据中个别数据变动较大时,可选择中位数来表示这组数据的“集中趋势”。

(4)众数的可靠性较差,它不受极端数据的影响,求法简便。当一组数据中某些数据多次重复出现时,众数是我们关心的一种统计量。

3、算术平均数和加权平均数的联系与区别及举例

算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。

4、加权平均数中权的差异对平均数的影响及举例

在实际问题中,一组数据里的各个数据的权未必相同,权的差异对平均数的影响较大。加权平均数中,由于权的不同,会导致结果的差异。

5、利用计算器求一组数据的平均数

目的:帮助学生进一步掌握本章的重点知识内容,并会结合实例说明,从而夯实“双基”。

注意事项:在重点知识的回顾中,应注重理论联系实际,重视学生的举例,关注学生所举例子的合理性、科学性和创造性等,并据此评价学生对知识的理解水平和学习的情感态度,使他们具有:一双能用数学视角观察世界的眼睛;一个能用数学思维思考世界的头脑。

第三环节:综合运用提高

内容:

1、从一批零件毛坯中抽取10件,称得它们的质量如下(单位:克):

400、0400、3401、2398、9399、8

399、8400、0400、5399、7399、8

利用计算器求出这10个零件的平均质量。

2、某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?

3、某公司销售部有营销人员15人,销售部为了制定某种商品的月销售量,统计了这15人某月的销售量如下:

每人销售件数1800510250210150w120

人数113532[

(1)求这15位营销人员该月销售量的平均数、中位数和众数;

(2)假设销售部负责人把每位营销员的月销售量定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售量,并说明理由。

4、下图反映了甲、乙两班学生的体育成绩。

(1)不用计算,根据条形统计图,你能判断哪个班级学生的体育成绩好一些吗?

(2)你能从图中观察出各班学生体育成绩等级的“众数”吗?

(3)如果依次将不及格、及格、中、良好、优秀记为55分、65分、75分、85分、95分,分别估计一下,甲、乙两班学生体育成绩的平均值大致是多少?算一算看你的估计结果怎么样?

(4)甲班学生体育成绩的平均数、中位数和众数有什么关系?你能说说其中的道理吗?你还能写出几组数据也适合这一规律吗?

目的:以上四道题目呈阶梯状,由浅入深,由单一到综合。第1、2题分别考查学生对算术平均数、加权平均数和计算器的掌握情况;第3题通过表格信息,让学生计算平均数、中位数和众数,体会这三者在具体情境中的意义和区别,并能根据数据信息作出评判和决策;第4题综合了课本复习题的最后两题,旨在巩固学生对统计图信息的识别和判断能力,运用数据的代表—平均数和众数说明实际问题,初步体会平均数、中位数和众数三者的“对称”关系,提高学生的估计能力和综合运用知识解决实际问题的能力,培养创新意识。

注意事项:依据题目的层次,第1、2题和第3题的(1)问可让学生先独立笔答完成后,教师再讲评;第3题的(2)问和第4题具有开放性,特别是第4题内涵丰富,要让学生展开思维,充分讨论,在合作交流中共同提高,教师对此要作出及时的评价。

对本章知识技能的评价,应当更多地关注数据的代表在不同的实际问题情境中的意义和应用,而不要过于关注其具体运算的熟练程度。

第四环节:课堂小结

内容:

1、本章知识结构和重点内容。

2、综合运用统计知识解决实际问题。

3、整理归纳知识的方法,勤于思考、善于总结的好习惯。

目的:围绕本节课的教学目标,进行知识、方法、能力、习惯全方位的小结,目的是为了学生的全面发展。

注意事项:课堂小结可由教师提纲挈领、画龙点睛式地完成。

第五环节:布置作业

1、课本本章复习题。

2、在数学成长本上进行本章的小结与反思。

四、教学反思

1、华罗庚教授说:读书要从薄到厚,又从厚到薄。复习重在从厚到薄。每一章的复习要把全章的知识分成块,整理成知识网络,形成知识系统,并加以综合运用,其中采用树图、表格、习题组等技术措施复习是有效的,本节课在这方面做了一些尝试。

2、一般复习课的容量比较大,一方面要让充分学生思考和交流,积极发挥其主体作用;另一方面教师作为组织者和引导者,要主次分明,把握好教学的节奏,提高课堂效率。

3、复习课不仅仅是知识的小结及运用,而且更重要的是学习方法、能力和习惯的培养,关注学生的可持续发展,这一点对于学生的终身学习是有益的。

八年级数学公开课教案2

教学目标:

1、在现实情境中,通过具体的操作活动,了解直角三角形的判定定理,

2、运用判定定理解决有关问题。

重点:直角三角形的判定定理。

难点:探索直角三角形的判定定理的应用。

教学过程:

一、回顾知识引入新课

1、直角三角形的定义:有一个角是直角的三角形叫直角三角形。

2、三角形内角和性质:三角形内角和等于180°。

3、三角形中线的定义:三角形顶点与对边中点连线段。

二、想一想,探求判定定理。

1、如图在△ABC中,如果∠A+∠B=90°那么△ABC是直角三形吗?

证明:∵∠A+∠B=90°(已知)

∠A+∠B+∠C=180°(△的内角和为180°)

∴∠C=180°-(∠A+∠B)=180°-90°=90°

∴△ABC是直角三角形(直角三角形定义)

直角△的判定定理1:两锐角互余的△是直角三角形。

在三角形中如果两锐角互余那么三角形是直角△

2、如果,三角形一边上的中线等这边的一半,那么这个△是直角△吗?

已知,如图在△ABC中,CD是AB边上的中线且CD=1/2AB求证△ABC是RT△

证明∵ CD是△ABC的AB边上中线(已知)

AD=BD=1/2AB(中点的性质)

∵ CD=1/2AB(已知)

∴ CD=BD CD=AD

∴ ∠2=∠B ∠1=∠A(等边对等角)

∵ ∠A+∠B+∠ABC=180(三角形内角和性质)

∴ ∠A+∠B+(∠1+∠2)=180

∴ ∠A+∠B+∠A+∠B=180

∴ 2(∠A+∠B)=180

∠A+∠B=90

所以三角形ABC是直角三角形(直角三角形判定定理1)

三、巩固与练习

1、在△ABC,若∠A=35,∠B=55则△ABC是△?

2、在△ABC中,CD是AB边上的中线,CD=1/2AB,那么△ABC的形状是( )

A:锐角△ B:钝角△ C:直角△ D:以上都不对

3、在等边△ABC中,延长BC至D,使CD=CB,使AC=1/2BD。求证:△ABD是直角△,

证明:∵ CD=CB(已知)

∴点C为BC的。中点(中点的定义)

∴ AC为△ABC的边BD上的中线(中线的定义)

∵ AC=1/2BD(已知)

∴ △ABD是直角△(直角△的判定定理2)

四、小结:这节课学习了直角三角形两个判定定理,

1、定理1:两锐角互余的三角形是直角三角形。

2、在三角形中如果一条边上的中线,等于这条边的一半的三角形是直角三角形。

五、作业布置:

课本87页练习题。

相关推荐

热门文档

17 2412725