高二数学必修五知识点归纳优推4篇
【引言】阿拉题库漂亮网友为您分享整理的“高二数学必修五知识点归纳优推4篇”范文资料,以供参考学习,希望这篇文档资料对您有所帮助,喜欢就下载分享给朋友吧!
高二数学必修五知识点总结【第一篇】
数列
1、数列的定义及数列的通项公式:
①。 anf(n),数列是定义域为N
的函数f(n),当n依次取1,2,时的一列函数值 ② i.归纳法
若S00,则an不分段;若S00,则an分段iii. 若an1panq,则可设an1mp(anm)解得m,得等比数列anm
Snf(an)
iv. 若Snf(an),先求a
1得到关于an1和an的递推关系式
Sf(a)n1n1Sn2an1
例如:Sn2an1先求a1,再构造方程组:(下减上)an12an12an
Sn12an11
2、等差数列:
① 定义:a
n1an=d(常数),证明数列是等差数列的重要工具。 ② 通项d0时,an为关于n的一次函数;
d>0时,an为单调递增数列;d<0时,a
n为单调递减数列。
n(n1)2
③ 前nna1
d,
d0时,Sn是关于n的不含常数项的一元二次函数,反之也成立。
④ 性质: ii. 若an为等差数列,则am,amk,am2k,…仍为等差数列。 iii. 若an为等差数列,则Sn,S2nSn,S3nS2n,…仍为等差数列。 iv 若A为a,b的等差中项,则有A3.等比数列:
① 定义:
an1an
q(常数),是证明数列是等比数列的重要工具。
ab2
。
② 通项时为常数列)。
③。前n项和
需特别注意,公比为字母时要讨论。
高二数学必修五知识点总结【第二篇】
排列P------和顺序有关
组合C-------不牵涉到顺序的问题
排列分顺序,组合不分
例如把5本不同的书分给3个人,有几种分法。"排列"
把5本书分给3个人,有几种分法"组合"
1、排列及计算公式
从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示。
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1)。
2、组合及计算公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号
c(n,m)表示。
c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);
3、其他排列与组合公式
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!。
n个元素被分成k类,每类的个数分别是n1,n2,。.。nk这n个元素的全排列数为
n!/(n1!_2!_.。_k!)。
k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m)。
排列(Pnm(n为下标,m为上标))
Pnm=n×(n-1)。.。.(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm;C<>nm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m
2008-07-0813:30
公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9________
从N倒数r个,表达式应该为n_n-1)_n-2)。.(n-r+1);
因为从n到(n-r+1)个数为n-(n-r+1)=r
高二数学必修五知识点整理【第三篇】
图形变换:
函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)
平移变换y=f(x)→y=f(x+a),y=f(x)+b
注意:
(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。
(ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。
对称变换y=f(x)→y=f(-x),关于y轴对称
y=f(x)→y=-f(x),关于x轴对称
y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称
y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)
伸缩变换:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。
一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;
高二数学必修五知识点总结【第四篇】
●解三角形
1、 ?
2、解三角形中的基本策略:角 边或边 角。如 ,则三角形的形状?
3、三角形面积公式 ,如三角形的三边是 ,面积是?
4、求角的几种问题: ,求
△面积是 ,求 。 ,求cosc
5、一些术语名词:仰角(俯角),方位角,视角分别是什么?
6、三角形的三个内角a,b,c成等差数列,则 三角形的三边a,b,c成等差数列,则
三角形的三边a,b,c成等比数列,则 ,你会证明这三个结论么?
数列
★★1.一个重要的关系 注意验证 与 等不等?如已知
2、 为等差
为等比
注:等比数列有一个非常重要的关系:所有的奇(偶)数项 。如{an}是等比数列,且
★★3.等差数列常用的性质:
①下标和相等的两项和相等,如 是方程 的两根,则
②在等差数列中, ……成等差数列,如在等差数列中,
③若一个项数为奇数的等差数列,则 , ------
4、数列的项问题一定是要研究该数列是怎么变化的?(数列的单调性)——研究 的大小。
数列的(小)和问题,
如:等差数列中, ,则 时的n= 。等差数列中, ,则 时的n=
5、数列求和的方法:
①公式法:等差数列的前5项和为15,后5项和为25,且 ★②分组求和法:
★③裂项求和法——两种情况的数列用:
★★④错位相减法——等差比数列(如 )——如何错位?相减要注意什么?最后不要忘记什么?
6、求通项的方法
①运用关系式 ★②累加(如 )
★③累乘(如
★★④构造新数列——如 ,a1=1,求an=?