首页 > 实用范文 > 寄语 >

反比例数学教案大全(精选8篇)

网友发表时间 2359279

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“反比例数学教案大全(精选8篇)”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

反比例数学教案大全【第一篇】

1.能运用反比例函数的相关知识分析和解决一些简单的实际问题。

2.在解决实际问题的过程中,进一步体会和认识反比例函数是刻

画现实世界中数量关系的一种数学模型。

运用反比例函数解决实际问题

运用反比例函数解决实际问题

一、情景创设

反比例函数在生活、生产实际中也有着广泛的应用。

例如:在矩形中s一定,a和b之间的关系?你能举例吗?

二、例题精析

例1、见课本73页

例2、见课本74页

四、课堂练习课本p74练习1、2题

五、课堂小结反比例函数的应用

六、课堂作业课本p75习题第1、2题

七、教学反思

更多初二数学教案,请点击

反比例数学教案大全【第二篇】

1. 本节 课讲述内容为北师大版教材九年级下册第五章《反比例函数》 的第二节,也这一章的重点。本节课是在理解反比例 函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

2. 对教材的分析

(1) 教学目标:进 一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对 函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

(2) 重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

(3) 难点:探索并掌握反比例函数的主要性质。

1、提问:

(1)=4/x 是什么函数?你会作反比例函数的图象吗?

(2)作图的步骤是 怎样的(3)填写电脑上的表格,开始在坐标纸上描点连线。

2、按照上述方法作 =―4/x 的图象3、 对照你所作的两个函数图象,找一下它们的相同点和不同点。

1、让学生观察函 数 =/x 的图象 ,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。

2、演示反比例函数中心 对称的性质以及轴对称性质,显示反比例函数的两条对称轴。

3、让学生观察函数 =/x 的图象,观察过反比例函数上任意一 点作x轴和轴的垂线,观察其围成矩形的面积变化情况。

(1) 拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出 结论。

(2) 拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。

1、给出两个反比例函数的图象,判断哪一个是 =2/x 和 =―2/x 的图象。

2、判断一位同学画的反比例函数的图象是否正确。

3、下列函数中,其图象位于第一、三象限

的有哪几个?在其图象所在象限内,的值随x的增大而增

大的有哪几个?

:课本137页第1题、141页第2题

反比例数学教案大全【第三篇】

教学目标:

知识与技能:

1.结合丰富的实例,认识反比例。

2.能根据反比例的意义,判断两个相关联的量是不是反比例。

过程与方法:

通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。

情感态度价值观:

培养学生自主、合作学习、探索新知的能力,激发学习数学的热情。感受反比例关系在生活中的广泛应用。初步渗透函数思想。

认识反比例,根据反比例意义判断两个相关联的量是否成反比例。

认识反比例,根据反比例意义判断两个相关联的量是否成反比例。

电脑课件

一、复习引入

1、计算

2、判断下面各题中的两种量是否成正比例?为什么?

(1)文具盒的单价一定,买文具盒的个数和总价。

(2)一堆货物一定,运走的量和剩下的量。

(3)汽车行驶的速度一定,行驶的路程和时间。

3、说说什么是正比例。

师:大家对正比例知识理解掌握得非常好,接下来我们就该学习什么了?

二、出示学习目标

1.能根据反比例的意义,判断两个相关联的量是不是反比例。

2.通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。

3.培养学生探索研究的能力,感受反比例关系在生活中的广泛应用。

三、指导自学

师:给你们讲个小故事:

过了几天,财主到了裁缝店取帽子,结果一看,顿时傻了眼:10顶的帽子小得只能戴在手指头上了!

学习提示:独立思考?

1、“为什么同一匹布,裁缝说做1顶帽子,2顶帽子,10顶都可以呢?”

合作学习小组讨论上述的问题。看书合作学习

1、把25页例

2、例3的表格补充完整。

4、你知道什么是反比例吗?

四、学生自学

五、检查自学效果

让学生说说自学要求中的内容。

师归纳:两种相关联的量,一种量随着另一种量的变化而变化,在变化过程中两种量的积一定,那么这两种量成反比例。

六、引导更正,指导运用

你们还找出类似这样关系的量来吗?”

学生:要走一段路,速度越慢(快),用的时间就越多(少)运一堆货物,每次运的越多(少),运的次数就越小(多)百米赛跑,路程100米不变,速度和时间是反比例;排队做操,总人数不变,排队的行数和每行的人数是反比例;长方体的体积一定,底面积和高是反比例。

七、当堂训练基础练习

1、填空

两种_____的量,一种量随着另一种量变化,如果这两种量中相对应的两个数的______,这两种量叫做成反比例的量,它们的关系叫做_______关系。

2、判断下面每题中的两种量是不是成反比例,并说明理由。

(1)煤的总量一定,每天的烧煤量和能够烧的天数。

(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。

(3)生产电视机的总台数一定,每天生产的台数和所用的天数。

(4)圆柱体的体积一定,底面积和高。

(5)小林做10道数学题,已做的题和没有做的题。

(6)长方形的长一定,面积和宽。

(7)平行四边形面积一定,底和高。提高练习

四、小结

通过这节课的学习,你有什么收获?

相关联,一个量变化,另一个量也随着变化积一定

xy=k(一定)

反比例数学教案大全【第四篇】

教学目标:

1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;。

2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;。

3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;。

4、体会数学从实践中来又到实际中去的研究、应用过程;。

5、培养学生的观察能力,及数学地发现问题,解决问题的能力。

教学重点:

教学用具:直尺。

教学方法:小组合作、探究式。

教学过程:

我们在小学学过反比例关系。例如:当路程s一定时,时间t与速度v成反比例。

即vt=;。

当矩形面积s一定时,长a与宽b成反比例,即ab=。

从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:

(s是常数)。

(s是常数)。

一般地,函数(k是常数,)叫做反比例函数。

如上例,当路程s是常数时,时间t就是v的反比例函数.当矩形面积s是常数时,长a是宽b的反比例函数。

在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论。

解:列表。

说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图。

一般地反比例函数(k是常数)的图象由两条曲线组成,叫做双曲线。

3、观察图象,归纳、总结出反比例函数的性质。

前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习。

显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证。

(1)的图象在第一、三象限.可以扩展到k=0时的情形,即k=0时,双曲线两支各在第一和第三象限。从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限的讨论与此类似。

抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程。

(2)函数的图象,在每一个象限内,y随x的增大而减小;。

从图象中可以看出,当x从左向右变化时,图象呈下坡趋势。从列表中也可以看出这样的变化趋势。有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小。由此可归纳出,当k0时,函数的图象,在每一个象限内,y随x的增大而减小。

同样可以推出的图象的性质。

(3)函数的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出,.如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子。同理,抽象出图象的性质。

函数的图象性质的讨论与次类似。

4、小结:

本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中。

5、布置作业习题。

反比例数学教案大全【第五篇】

1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题。

2、能根据实际问题中的条件确定反比例函数的解析式。

3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。

重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题。

难点:根据实际问题中的条件确定反比例函数的解析式。

为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg,请根据题中所提供的信息,解答下列问题:。

(1)药物燃烧时,y关于x的函数关系式为:________,自变量x的取值范围是:_______,药物燃烧后y关于x的函数关系式为_______。

(1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?

(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?

例2某自来水公司计划新建一个容积为的长方形蓄水池。

(1)蓄水池的底部s与其深度有怎样的函数关系?

(2)如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?

(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100m和60m,那么蓄水池的.深度至少达到多少才能满足要求?(保留两位小数)。

1、一定质量的氧气,它的密度(kg/m3)是它的体积v(m3)的反比例函数,当v=10m3时,=/m3.(1)求与v的函数关系式;(2)求当v=2m3时求氧气的密度。

2、某地上年度电价为元度,年用电量为1亿度.本年度计划将电价调至元至元之间.经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-)(元)成反比例,当x=时,y=-。

(1)求y与x之间的函数关系式;

3、如图,矩形abcd中,ab=6,ad=8,点p在bc边上移动(不与点b、c重合),设pa=x,点d到pa的距离de=y.求y与x之间的函数关系式及自变量x的取值范围。

反比例数学教案大全【第六篇】

2.利用反比例函数的图象解决有关问题.

1.经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;。

2.探索反比例函数的图象的性质,体会用数形结合思想解数学问题.

一、创设情境。

上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k0)的图象,探究它有什么性质.

二、探究归纳。

1.画出函数的图象.

分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x0.

解1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等.

3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.

上述图象,通常称为双曲线(hyperbola).

提问这两条曲线会与x轴、y轴相交吗?为什么?

学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤).

学生讨论、交流以下问题,并将讨论、交流的结果回答问题.

1.这个函数的图象在哪两个象限?和函数的图象有什么不同?

2.反比例函数(k0)的图象在哪两个象限内?由什么确定?

(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

注1.双曲线的两个分支与x轴和y轴没有交点;。

2.双曲线的两个分支关于原点成中心对称.

以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少.

在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小.

三、实践应用。

例1若反比例函数的图象在第二、四象限,求m的值.

分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+10,由这两个条件可解出m的值.

解由题意,得解得.

例2已知反比例函数(k0),当x0时,y随x的.增大而增大,求一次函数y=kx-k的图象经过的象限.

分析由于反比例函数(k0),当x0时,y随x的增大而增大,因此k0,而一次函数y=kx-k中,k0,可知,图象过二、四象限,又-k0,所以直线与y轴的交点在x轴的上方.

解因为反比例函数(k0),当x0时,y随x的增大而增大,所以k0,所以一次函数y=kx-k的图象经过一、二、四象限.

例3已知反比例函数的图象过点(1,-2).

(1)求这个函数的解析式,并画出图象;。

(2)由点a在反比例函数的图象上,易求出m的值,再验证点a关于两坐标轴和原点的对称点是否在图象上.

解(1)设:反比例函数的解析式为:(k0).

而反比例函数的图象过点(1,-2),即当x=1时,y=-2.

所以,k=-2.

(2)点a(-5,m)在反比例函数图象上,所以,

点a的坐标为.

点a关于x轴的对称点不在这个图象上;。

点a关于y轴的对称点不在这个图象上;。

点a关于原点的对称点在这个图象上;。

(1)求m的值;。

(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

(3)当-3时,求此函数的最大值和最小值.

解(1)由反比例函数的定义可知:解得,m=-2.

(2)因为-20,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大.

(3)因为在第个象限内,y随x的增大而增大,

所以当x=时,y最大值=;。

当x=-3时,y最小值=.

所以当-3时,此函数的最大值为8,最小值为.

例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.

(1)写出用高表示长的函数关系式;。

(2)写出自变量x的取值范围;。

(3)画出函数的图象.

解(1)因为100=5xy,所以.

(2)x0.

(3)图象如下:

说明由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.

四、交流反思。

本节课学习了画反比例函数的图象和探讨了反比例函数的性质.

1.反比例函数的图象是双曲线(hyperbola).

(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

五、检测反馈。

1.在同一直角坐标系中画出下列函数的图象:

(1);(2).

2.已知y是x的反比例函数,且当x=3时,y=8,求:

(1)y和x的函数关系式;。

(2)当时,y的值;。

(3)当x取何值时,?

3.若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值.

4.已知反比例函数经过点a(2,-m)和b(n,2n),求:

(1)m和n的值;。

(2)若图象上有两点p1(x1,y1)和p2(x2,y2),且x1x2,试比较y1和y2的大小.

反比例数学教案大全【第七篇】

教学目标:

3、利用多媒体动画的演示,让学生体验到反比例的变化规律。

教学重点:感受反比例的变化,概括反比例的意义;

教学难点:正确判断两种相关联的量是否成反比例;

教学准备:20支铅笔、一个笔筒;相关课件;学生分小组(每组一份观察记录单)。

每次拿的支数。

10。

5

4

2

1

拿的次数。

总支数。

教学过程:

一、复习。

1、什么叫做“成正比例的量”?

2、判断两种量是否成正比例关键是什么?

3、练习:课本表中的两种量是不是成正比例?为什么?

二、小组协作概括“成反比例的量”的意义。

(一)活动一。

师:好,现在请同学们拿出课前准备的学具,以小组为单位,动手操作,按要求认真填写观察记录单。看哪个组完成的又快又好!

1、学生汇报观察记录单的填写结果。

2、引导观察:在填、拿的过程中,你发现了什么?

3、师:你能根据表格,写出这三个量的关系式吗?

4、小结:通过刚才的活动,我们发现每次拿的支数变化,拿的次数也随着变化,但每次拿的支数和拿的次数的积即总支数总是一定的。

5、揭示反比例的意义(阅读课本,明确反比例关系)。

6、如果用x、y表示两种相关联的量,用k表示积,反比例关系式怎样表示?

(二)活动二:(例3)。

1、课件出示例3,指名读题,学生独立完成。

2、总结归纳出正比例和反比例的相同点和不同点。

三、强化练习发展提高。

1判定两个量是否成反比例,主要看它们的()是否一定。

2全班人数一定,每组的人数和组数。

()和()是相关联的量。

每组的人数×组数=全班人数(一定)。

所以()和()是成反比例的量。

3判断下面每题中的两种量是不是成反比例,并说明理由。

糖果的总数一定,每袋糖果的粒数和装的袋数。

煤的总量一定,每天的烧煤量和能够烧的天数。

生产电视机的总台数一定,每天生产的台数和所用的天数。

长方形的面积一定,它的长和宽。

4机动练习:

想一想:铺地面积一定时,方砖边长与所需块数成不成反比例?为什么?

四、全课总结。

1、你能不能结合日常生活举一些反比例的例子。

2、今天这节课,你有什么收获?还有什么遗憾?

反比例数学教案大全【第八篇】

教科书第64~65页的例3和“试一试”,“练一练”和练习十三的第6~8题。

1.使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。

2.使学生在认识成反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3.使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

认识反比例的意义

掌握成反比例量的.变化规律及其特征

教学准备:多媒体

一、复习铺垫

1、怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?

2、判断下面两种量是否成正比例?为什么?

时间一定,行驶的路程和速度

除数一定,被除数和商

3、单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?

4、导入新课:

如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。

二、探究新知

1、出示例3的表格

学生填表

2、小组讨论:

(1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?

(2)你能找出它们变化的规律吗?

(3)猜一猜,这两种量成什么关系?

3、全班交流

学生初步概括反比例的意义(根据学生回答,板书)

4、完成“试一试”

学生独立填表

思考题中所提出的问题

组织交流,再次感知成反比例的量

5、抽象表达反比例的意义

根据学生的回答,板书:x×y=k(一定)揭示板书课题。

三、巩固应用

1、练一练

每袋糖果的粒数和装的袋数成反比例吗?为什么?

2、练习十三第6题

先算一算、想一想,再组织讨论和交流。

要求学生完整地说出判断的思考过程。

3、练习十三第7题

先独立思考作出判断,再有条理地说明判断的理由。

4、练习十三第8题

先填表,根据表中数据进行判断,明确:长方形的面积一定,长和宽成反比例;长方形的周长一定,长和宽不成反比例。

5、思考:

100÷x=y,那么x和y成什么比例?为什么?

6、同桌学生相互出题,进行判断并说明理由。

四、反思

学生交流

五、作业

完成《练习与测试》相关作业

板书设计:

成反比例的量

相关推荐

热门文档

59 2359279