首页 > 工作范文 > 工作计划 >

高中数学必修教案范例【热选10篇】

网友发表时间 2060159

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“高中数学必修教案范例【热选10篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

高中数学必修教案范文【第一篇】

1.掌握数轴的三要素,能正确画出数轴。

2、会用数轴上的点表示有理数;;会求一个有理数的相反数;能利用数轴比较有理数的大小。

过程与方法经历从现实情景抽象出数轴的过程,体会数学与现实生活的联系。

情感态度与价值观感受数形结合的.思想方法;

教学重点会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。

教学难点利用数轴比较有理数的大小。

(一)创设情境,引入课题。

(1)(出示投影1)问题:三个温度计所表示的温度是多少?

学生回答.。

(2)在一条东西向的马路上,有一个汽车站,汽车站东3m和处分别有一棵柳树和一棵杨树,汽车站西3m和处分别有一棵槐树和一根电线杆,试画图表示这一情境.

这种表示数的图形就是今天我们要学的内容—数轴(板书课题)。

(二)得出定义,揭示内涵。

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(教师示范画数轴,边说边画):

(1)画直线,取原点。

(2)标正方向。

(3)选取单位长度,标数(强调:负数从0向左写起)。

概念:规定了原点、正方向和单位长度的直线叫做数轴。

(三)强化概念,深入理解。

1、下列图形哪些是数轴,哪些不是,为什么?

学生回答,相互纠正,理解数轴三要素,巩固数轴概念。

2、学生自己在练习本上画一个数轴。教师在黑板上画。

(四)动手练习,归纳总结。

1、在数轴上的点表示有理数。

一个学生在黑板上完成,其他同学在自己所画数轴上完成。

明确“任何一个有理数都可以用数轴上的一个点来表示”

2.指出数轴上a,b,c,d各点分别表示什么数。@师愿教育。

3、通过数轴比较有理数的大小。观察类比温度计回答问题。

(1)在数轴上表示的两个数,(右)边的数总比(左)边的数大;

(2)正数都(大于)0,负数都(小于)0;正数(大于)一切负数。

例1、比较下列各数的大小:-,,-3,-2。

巩固所学知识。

(五)、归纳小结,强化思想。

师生总结本课内容。

1、数轴的概念,数轴的三要素。

2、数轴上两个不同的点所表示的两个有理数大小关系。

3、所有的有理数都可以用数轴上的点来表示。

师:你感到自己今天的表现怎样?

习题、2、3。

选作第4题。

高中数学必修教案范文【第二篇】

本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。

数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。

教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。

加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。

本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。

《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,

位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。

在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的'关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”

学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。

正弦定理和余弦定理(约3课时)

应用举例(约4课时)

实习作业(约1课时)

1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。

2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。

高中数学必修教案范文【第三篇】

专题八当今世界经济的全球化趋势。

通史概要:

当今世界经济发展有两个明显的趋势:一是世界经济区域集团化,二是世界经济全球化。世界经济区域集团化是最终实现经济全球化的重要步骤和途径,经济全球化则是区域经济集团化的最终归宿。

世界经济区域集团化是生产力高度发展的必然产物,是生产国家化、国际分工向纵深发展需要加强合作的结果,也是世界经济竞争激烈的表现。它产生的原因有:现代科技的发展、国际间经济竞争和客观上存在的分工。区域集团化的发展分为三个阶段:第一阶段为五六十年代,世界经济集团化的趋势主要出现在欧洲,如欧洲煤炭共同体的出现。第二阶段为六七十年代,区域集团化成为一种世界经济现象。欧洲区域集团化趋势进一步发展,如欧共体的建立;一些发展中国家的地区性经济集团也纷纷出现,如东盟的出现。第三阶段为80年代至今,区域集团化掀起新的浪潮,进入了较高层次的经济一体化时期,出现了欧盟、北美自由贸易区和亚太经合组织三大区域经济集团。

世界经济全球化是世界生产力发展的要求和结果,是不以人的意志为转移的历史趋势。它突出的表现在国际贸易、国际投资、国际金融和跨国公司的发展。经济全球化的过程中的问题是:在经济全球化的过程中,不可避免地把资本主义固有的矛盾扩展到全球,造成南北矛盾、贫富分化、环境问题、能源危机、全球性的经济金融危机、恐怖组织活动猖獗等等,直接影响到人类的生存与发展。

我国在当今世界经济发展趋势中,作为发展中国家,应该如何面对机遇和挑战,成了新时期经济发展人们共同关心的话题。从中国加入亚太经合组织、加入世界贸易组织,加强同东盟的联系的史实中,我们的态度是:在坚持独立自主、自力更生的前提下,拥有“双赢”的思维,抱着开放的心态,加强国际的合作与交流,参与国际竞争,抓住机遇,接受挑战,在国际的竞争和合作中,提高我国的经济发展水平,跟随世界发展的潮流。概括而言,就是辩证地看待世界经济发展趋势这一经济现象,树立正确的.发展观。

一欧洲的联合。

课标要求:以欧洲联盟、北美自由贸易区及亚太经济合作组织为例,认识当今世界经济区域集团化发展趋势。

教学目标:

(1)知识与能力:分析第二次世界大战后西欧经济进入“黄金时代”的原因;简述欧洲国家从“欧共体”走向欧盟的历程,认识欧洲联盟成立对世界经济和政治格局的影响。

概述欧元产生的影响,培养多角度、多层次理解问题的能力。

(2)过程与方法:通过讨论西欧经济在二战后进入“黄金时代”的共同原因,进一步思考中国的社会主义建设应如何借鉴其合理的方法与正确的经验,学习用联系的方法看待问题,提高理论指导实践的能力;通过分组学习,搜集“欧共体”及“欧盟”成立的资料,了解整个欧洲走向联合的过程,认识当今世界经济区域集团化发展趋势。

(3)情感、态度与价值观:通过对欧洲走向联合这段历史的学习,认识当今国际社会国家间团结协作的重要性,树立国际意识;通过对欧洲走向联合的史实的归纳,得出一个别国家或地区怎样才能快速发展的一般规律;并结合我国的实际,进一步探讨一下我们可以借鉴哪些做法,从而树立为我国社会主义现代化建设而奋斗的责任感。

教学课时:1课时。

重点难点:

重点:欧洲走向联合过程及影响。

难点:欧洲走向联合的原因。

教学建议:

1、本课共有三个方面的内容,“西欧经济的'黄金时代'”主要讲述:二战后的20世纪50年代到60年代,西欧各国经济在恢复的基础上,进入调整增长期,被称为西欧经济的“黄金时代”;“从'欧共体到'欧洲联盟'”主要是欧洲从经济一体化到政治一体化的发展趋势;“货币王国的世界公民”主要以欧元的流通为例,进一步表明欧洲走向联合的趋势。

2、西欧经济高速发展的共同原因:第一,西欧各国进行社会改革和政策调整。进行社会改革,例如:推行福利制度,适当改善人民的生活条件,缓和社会矛盾,稳定社会秩序;进行政策调整,如:将一些私人垄断企业国有化,并建立有关国计民生的重要工业部门。这些政策的推行,促进了西欧经济的稳定持续高速发展,从而出现前所未有的繁荣。第二,马歇尔计划的实施,解决了西欧战后经济发展的启动资金,西欧重工业在短时期内完成了新的装备,并有能力购买足够的工业原料。第三,战后西欧广泛使用第三次科技革命的成果,并对产业部门进行了改造,使劳动生产率大大提高,从而有力地推动了经济的高速发展。

3、伴随着欧洲经济合作的成功,欧洲经济不断的恢复,要求在国际上发挥更重要的作用。因而要加强在政治领域的合作成为欧洲各国的一致要求。面对二战结束后以美苏为首的两极争霸的冷战格局,欧洲各国迫切要求组成一个更加强大的团体来维护自己的利益。于是在政治领域的合作很快便实施开来。

4、为进一步加强欧洲共同体之间的经济合作与交流,减少共同体内部成员国存在的贸易壁垒,用统一的货币在欧共体各国之间流通,实现经济的联合,从而进一步加强欧洲各国之间的政治合作。

二、发展的亚太。

课标要求:以欧洲联盟、北美自由贸易区及亚太经济合作组织为例,认识当今世界经济区域集团化发展趋势。

教学目标:

(1)知识与能力:了解东盟的发展历程,说说中国与东盟的交往情况;分析北美自由贸易区建立的原因和影响,比较北美自由贸易区与欧盟的异同;概述亚太经济合作组织建立的过程,探讨亚太国家加强合作的途径与方式。

(2)过程与方法:通过搜集中国与东盟交往的材料,了解东盟日益扩大及其影响;用列表等方式比较北美自由贸易区与欧盟的异同,学习用比较的方法认识历史问题;通过上网等途径搜集中国参加apec会议的资料,多渠道去了解和认识apec建立的史实及影响。

(3)情感、态度与价值观:通过对东盟、北美自由贸易区和亚太经合组织等区域经济一体化进程的学习和了解,体会当今世界国家间加强合作、竞争与发展的重要性,树立合作与竞争的意识。

教学课时:1课时。

重点难点:

重点:通过了解欧洲联盟、北美自由贸易区及亚太经济合作组织,认识当今世界经济区域集团化发展趋势。

难点:中国积极参与世界区域经济组织的意义。

教学建议:

1、在经济全球化的进程中,亚太地区的经济集团化也在不断深入发展。世界三大区域性经济集团有两个分别在该地区。这一地区成为当今世界上经济发展最活跃地区。课文分别以“东盟”、“北美自由贸易区”和“亚太经全组织”三个经济区域集团为例,介绍了当今世界经济区域集团化发展趋势。每个集团内部有着自身的规则的同时也不断与其它区域集团相联系,从而使世界经济形成了密不可分的一个整体。

2、东南亚国家联盟自1967成立以来,已经历时近三分之一世纪。东盟在维护和促进各成员国相互间的政治和经济合作,实现地区和平稳定,加快成员国经济增长,提高成员国人民生活水平等方面都取得了显著成绩。尤其是在国际政治方面,极大地增强了东盟的国际地位。东盟在由四大洲国家组成的apec中具有举足轻重的政治地位,又是由亚欧两大洲主要国家参加的亚欧会议的倡议者和发起者,在东亚乃至亚洲政治舞台上成为使日本、中国和印度等大国瞠乎其后的主角。

3、日本经济的崛起,特别是欧洲经济一体化实施的外在压力,美国、加拿大和墨西哥3国发展各自经济的内在动力,是北美自由贸易区成立的根本原因。美、加、墨3国又是山水相连的邻邦;语言文字、价值观念、风俗习惯等又颇相似;经济互补性强;相互贸易基础良好,美、加、墨3国具有实行经济一体化的必要性,又具有实行经济一体化的可能性。美国认为要取得世界经济的主导地位,只有建立以自己为中心经济区域集团,才能在经济全球化大潮中立于不败之地。

4、二十世纪七十年代后,亚太地区,特别是东亚各国和地区的对外开放经济政策和经济迅速发展为亚太区域经济合作创造了条件。东亚地区经济的发展,国际收支条件的改善,缓解亚太地区南北之间的矛盾,为亚太经济合作创造了条件。欧共体统一市场和美加自由贸易区的建立,刺激了亚太向区域经济合作的方向发展。亚太经合组织的主要活动,为各成员提供区域经济,科技,贸易和发展等方面多边合作的机会,交流各成员在这些领域内的经验,促进本区域的共同发展.它从产生、发展及运作模式均区别于欧盟和nafta,有自身的特点,这些特点适应了apec各成员国经济发展的状况和经济运行模式。

三、经济全球化的世界。

课标要求:

(1)以“布雷顿森林体系”建立为例,认识第二次世界大战后以美国为主导的资本主义世界经济体系的形成。

(2)了解世界贸易组织(wto)的由来和发展,认识它在世界经济全球化进程中的作用。了解中国参加世界贸易组织(wto)的史实,认识其影响和作用。

(3)了解经济全球化的发展趋势,探讨经济全球化进程中的问题。

教学目标:

(1)知识与能力:了解“布雷顿森林体系”建立的基本史实,分析其影响;简述世界贸易组织(wto)的由来和发展,认识它在世界经济全球化进程中的作用;了解中国参加世界贸易组织(wto)的史实,认识其影响和作用;概述经济全球化的发展趋势,探讨经济全球化进程中的问题。

(2)过程与方法:阅读课文和查找中国加入世贸组织谈判的历程等,了解“从gatt到wto”的过程,围绕世界贸易组织建立的必要性并对中国加入wto的利与弊等问题展开讨论;开展课堂讨论或辩论:经济全球化对本地区的影响是利大于弊还是弊大于利?如何解决经济全球化出现的问题?从多角度去分析历史问题。

高中数学必修教案范文【第四篇】

2.教学重点。

函数单调性的概念,判断和证明简单函数的单调性.。

3.教学难点。

函数单调性概念的生成,证明单调性的代数推理论证.。

1.教学有利因素。

2.教学不利因素。

1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.。

为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:

(一)创设情境,引入课题。

问题1:观察下列函数图象,请你说说这些函数有什么变化趋势?

设函数的定义域为,区间.在区间上,若函数的图象(从左向右)总是上升的,即随的增大而增大,则称函数在区间上是递增的,区间称为函数的单调增区间(学生类比定义“递减”,接着推出下图,让学生准确回答单调性.)。

(二)引导探索,生成概念。

问题2:(1)下图是函数的图象(以为例),它在定义域r上是递增的吗?

(2)函数在区间上有何单调性?

预设:学生会不置可否,或者凭感觉猜测,可追问判定依据.。

问题3:(1)如何用数学符号描述函数图象的“上升”特征,即“随的增大而增大”?

(2)已知,若有.能保证函数在区间上递增吗?

拖动“拖动点”改变函数在区间上的图象,可以递增,可以先增后减,也可以先减后增.。

(3)已知,若有,能保证函数在区间上递增吗?

拖动“拖动点”,观察函数在区间上的图象变化.。

(4)已知,若有。

能保证函数在区间上递增吗?

设计说明:可先请持赞同观点的同学说明理由,再请持反对意见的学生画出反驳,然后追问:无数个也不能保证函数递增,那该怎么办呢?若学生回答全部取完或任取,追问“总不能一个一个验证吧?”

问题4:如何用数学语言准确刻画函数在区间上递增呢?

问题5:请你试着用数学语言定义函数在区间上是递减的.。

(三)学以致用,理解感悟。

判断题:你认为下列说法是否正确,请说明理由.(举例或者画图)。

(1)设函数的定义域为,若对任意,都有,则在区间上递增;

(2)设函数的定义域为r,若对任意,且,都有,则是递增的;

(3)反比例函数的单调递减区间是.。

例题:判断并证明函数的单调性.。

高中数学必修教案范文【第五篇】

集合这部分的主要内容是集合的概念、表示方法和集合之间的关系和运算。纵观近几年高考题,集合的考查以选择题、填空题为主要题型。集合的概念和基本运算是本章的重点内容,也是高考的必考内容。复习中首先要把握基础知识,深刻理解本章的基础知识点,重点掌握集合的概念和运算。本章常用的数学思想方法主要有:数形结合的思想,如常借助于维恩图、数轴解决问题;分类讨论的思想,如一元二次方程根的讨论、集合的包含关系等。复习时要重视对基本思想方法的渗透,逐步培养用数学思想方法来分析问题、解决问题的能力。

(二)规律方法总结。

1、集合中元素的互异性是集合概念的重点考查内容。一般给出两个集合,并告知两个集合之间的关系,求集合中某个参数的范围或值的时候,要特别验证是否符合元素之间互异性。2、考查集合的运算和包含关系,解题中常用到分类讨论思想,分类时注意不重不漏,尤其注意讨论集合为空集的情况。3、新定义的集合运算问题是以已知的集合或运算为背景,引出新的集合概念或运算,仔细审题,弄清新定义的意义才是关键。

基本初等函数。

基本初等函数的内容是函数的基础,也是研究其他较复杂函数的转化目标,掌握基本初等函数的图象和性质是学习函数知识的必要的一步。与指数函数、对数函数有关的试题,大多以考查基本初等函数的性质为依托,结合运算推理来解题。所以这部分内容更注重通过函数图象读取各种信息,从而研究函数的性质,熟练掌握函数图象的各种变换方式,培养运用数形结合思想来解题的能力。

(二)规律方法总结。

1、指数函数多与一次函数、二次函数、反比例函数等知识结合考查综合应用知识解决函数问题的能力。指数方程的求解常利用换元法转化为一元二次方程求解。由指数函数和二次函数、反比例函数结合成的函数的单调性的判定注意底数与1的关系的判定。

2、解对数方程(或不等式)就是将对数方程(或不等式)化为有理方程(或不等式)。要注意转化必须是等价的,特别要考虑到对数函数定义域。

高中数学必修教案范文【第六篇】

掌握三角函数模型应用基本步骤:。

(1)根据图象建立解析式;。

(2)根据解析式作出图象;。

(3)将实际问题抽象为与三角函数有关的简单函数模型.

教学重难点。

利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

教学过程。

一、练习讲解:《习案》作业十三的第3、4题。

(精确到).

米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材p65面3题。

三、小结:1、三角函数模型应用基本步骤:。

(1)根据图象建立解析式;。

(2)根据解析式作出图象;。

(3)将实际问题抽象为与三角函数有关的简单函数模型.

2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.

四、作业《习案》作业十四及十五。

将本文的word文档下载到电脑,方便收藏和打印。

高中数学必修教案范文【第七篇】

(1)掌握与()型的绝对值不等式的解法.

(2)掌握与()型的绝对值不等式的解法.

(3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力;。

教学重点:型的不等式的解法;。

教学难点:利用绝对值的意义分析、解决问题.

教学过程设计。

教师活动。

学生活动。

设计意图。

一、导入新课。

提问正数的绝对值什么?负数的绝对值是什么?零的绝对值是什么?举例说明?

概括。

口答。

绝对值的概念是解与()型绝对值不等值的概念,为解这种类型的绝对值不等式做好铺垫.。

二、新课。

提问如何解绝对值方程.。

质疑的解集有几部分?为什么也是它的解集?

练习解下列不等式:

(1);

(2)。

设问如果在中的,也就是怎样解?

点拨可以把看成一个整体,也就是把看成,按照的解法来解.。

所以,原不等式的解集是。

设问如果中的是,也就是怎样解?

点拨可以把看成一个整体,也就是把看成,按照的解法来解.。

由得。

由得。

所以,原不等式的解集是。

口答.画出数轴后在数轴上表示绝对值等于2的数.。

画出数轴,思考答案。

不等式的解集表示为。

画出数轴。

思考答案。

不等式的解集为。

或表示为,或。

笔答。

(1)。

(2),或。

笔答。

笔答。

根据绝对值的意义自然引出绝对值方程()的解法.。

由浅入深,循序渐进,在型绝对值方程的基础上引出()型绝对值方程的解法.。

针对解()绝对值不等式学生常出现的情况,运用数轴质疑、解惑.。

落实会正确解出与()绝对值不等式的教学目标.。

在将看成一个整体的关键处点拨、启发,使学生主动地进行练习.。

继续强化将看成一个整体继续强化解不等式时不要犯丢掉这部分解的错误.。

三、课堂练习。

解下列不等式:

(1);

(2)。

笔答。

(1);

(2)。

检查教学目标落实情况.。

四、小结。

的解集是;的解集是。

解绝对值不等式注意不要丢掉这部分解集.。

五、作业。

1.阅读课本含绝对值不等式解法.。

2.习题2、3、4。

课堂教学设计说明。

1.抓住解型绝对值不等式的关键是绝对值的意义,为此首先通过复习让学生掌握好绝对值的意义,为解绝对值不等式打下牢固的基础.

2.在解与绝对值不等式中的关键处设问、质疑、点拨,让学生融会贯通的掌握它们解法之间的内在联系,以达到提高学生解题能力的目的.

3.针对学生解()绝对值不等式容易出现丢掉这部分解集的错误,在教学中应根据绝对值的意义从数轴进行突破,并在练习中纠正这个错误,以提高学生的运算能力.

高中数学必修教案范文【第八篇】

3、情感态度与价值观目标:感受代数与几何问题的相互转换。体会品面直角坐标系在解决实际问题的作用,培养数学学习兴趣。

重点:理解平面直角坐标中点与数的一一对应关系;

难点:根据坐标描出点的位置,以及坐标轴上的点的坐标特点。

教师准备四张大的纸质坐标格子。

一、温故知新,导入新课。

游戏导入:上一节课我们学习了有序数对,大家学习积极性很高,今天老师先考考你们, 看你们掌握了多少。

我们将教室里的座位分为八列七排。a排b号记做有序数对(a,b),同学们先找准自己的数对号。听老师报数对,若是你自己的数对号,就快速站起来。反应太慢和站错了都算失败,扣一分;反之加一分。最后以组为单位,比比哪组得分最高。

我们可以发现,通过教室平面内的有序数对,可以唯一的确定与之对应的同学。

二、新课教学

课本例子:我们知道数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。例如点a数轴上的坐标是-4,点b数轴上的坐标是2;我们说坐标是的点,也可以在数轴上唯一确定。

学生活动:小a说可以像教室座位一样给任意点编一个横排纵排的号,小

b说我们可以每个点列一个数轴・・・

教师活动:引导学生思考,怎么才能用同一标准,方便的确定每一点的位置?

结合横纵排编号以及数轴,我们可以综合考虑,引出一个横纵的数轴?

得出结论:我们可以在平面内画两条相互垂直、原点重合的数轴,组成平面直角坐标系,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上为正方向;两坐标轴的交点为平面直角坐标系的原点。

那有了这样的平面直角坐标系,平面内的点就可以用之前学的有序数对来表示了。例如:由a分别向x轴和y轴作垂线。垂足m在x轴上的`坐标是3,垂足n在y轴上的坐标是4,我们说a的坐标是3,纵坐标是4,有序数对(3,4)就叫做a的坐标,记作a(3,4)

教师提问2:同学们按照这种做法,在坐标纸上标出b、c、d的坐标。

教师活动:走下讲台,关注学生的汇坐标过程方法,指出学生出现问题的地方,并予以改正。

教师提问3:在横纵坐标轴上各标一点e、f,问:坐标原点以及这两点的坐标是什么?

教师活动:引导学生思考归纳坐标轴上的点的坐标的特点。

得出结论:原点的坐标是(0,0),x轴上的点的坐标的纵坐标为0;y轴上的点的坐标的横坐标为0。

三、课程巩固

师生互动:与学生一起回忆平面直角坐标系的各部分的意义,平面内的点怎么对应坐标,以及坐标轴上的点的坐标特点。

“练一练”:

在黑板上贴出四张事先准备好的纸质坐标格子,在上面标出任意的abcdefg等点,每组我点一个按坐标序列对,对应的同学上黑板,来描出各点的坐标。对一个加一分,错一个扣一分,得分相同的看用时,时间短者胜,过程中下面的学生不能提示,提示一次扣2分。比赛看哪组学生代表得分最多。

(1,2)、(3,4)、(5,6)、(7,8)四位同学上黑板来描点。

教师活动:规范课堂气氛,公平的评判,对于表现好的小组代表予以表扬,表现稍逊的学生不要气馁,给予鼓励,争取下一次可以获胜。

四、小结作业:

思考平面直角坐标系中坐标与点的对应关系,如何由坐标值确定点的位置。下节课我们会探讨这个问题。

平面直角坐标系:平面内画两条相互垂直、原点重合的数轴组成

水平的数轴称为x轴或横轴,习惯上取向右为正方向;

竖直的数轴称为y轴或纵轴,取向上为正方向;

两坐标轴的交点为平面直角坐标系的原点。

高中数学必修教案范文【第九篇】

引用:本文《高中化学必修二教案(人教版)》来源于师库网,由师库网博客摘录整理,以下是的详细内容:开发利用金属矿物和海水...《基本营养物质》教案化学反应的速率和限度化学能与热能化学与资源综合利用、环...最简单的有机化合物dd...《生活中两种常见的'有机...来自石油和煤的两种基本...引用:师库网温馨提示本篇内容来源于师库网,旨在用于课件制作交流,非盈利性质,仅供参考,针对本文的问题如需了解更详细,可留言或者联系客服tags:教案、课件、师库网、教案网、课件网。

高中数学必修教案范文【第十篇】

棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

棱柱的性质。

(1)侧棱都相等,侧面是平行四边形。

(2)两个底面与平行于底面的截面是全等的多边形。

(3)过不相邻的两条侧棱的截面(对角面)是平行四边形。

2、棱锥。

棱锥的性质:

(1)侧棱交于一点。侧面都是三角形。

3、正棱锥。

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(2)多个特殊的直角三角形。

a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

相关推荐

热门文档

40 2060159