首页 > 工作范文 > 工作计划 >

教育工作者的图形中的规律教学反思精彩8篇

网友发表时间 2313476

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“教育工作者的图形中的规律教学反思精彩8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

教育工作者的图形中的规律教学反思【第一篇】

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验;教师是学生数学活动的组织者、引导者与合作者;教师要积极利用各种教学资源,创造性地使用教材,设计适合学生发展的教学过程。

数学教学中,要创设与学生生活环境相关的,又是学生感兴趣的学习情境,使学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,感受到数学来源于生活,体会到数学与现实生活的密切联系。为此本课一开始就创设了游戏:猜小棒,通过让学生猜一猜小棒的个数和三角形的个数的关系引出要学习的内容与规律有关。这样既激发了学生的学习兴趣,又让学生感受到数学与生活的紧密联系。

“教学中应尊重每一个学生的个性特征,允许不同的学生从不同的角度认识问题,采用不同的知识与方法解决问题。”本课在让学生猜摆10个三角形要几根小棒时,注重解决问题的多样化,允许学生数和算。只要学生能准确地找出方法,就都给予肯定。让学生探究图形个数与小棒根数的关系,鼓励学生从不同的角度去探究可能隐含的规律。

“动手实践、自主探究、合作交流是学生学习数学的重要方式:数学学习过程充满着观察、实验、猜测、验证、推理与交流等探索性与挑战性活动。教师要改变以例题、示范、讲解为主的教学方式,引导学生投入到探究与交流的学习活动之中。”课中在找规律时,大胆放手让学生自主探究,采用独立探索与合作学习相结合的方式。整个教学过程力求体现学生是数学学习的主人,教师是数学学习的组织者、引导者、和合作者。

学用结合,边学边用,是这节课的结构特点,规律归纳概括后,设计了相应的数学问题作练习,让学生在练习中巩固,在实践应用中深化规律的认识。如根据要摆的三角形个数说出小棒的根数或根据小棒的根数说出要摆的三角形的.个数。让学生能灵活应用本节课所学规律进行解答,是深层次的应用,这种应用不仅能启迪学生灵活变通所学知识,还有利于培养学生的创新精神和实践能力。

教育工作者的图形中的规律教学反思【第二篇】

1、给学生独立思考,找规律的时间少了。教材呈现的规律是这两种方法:一是3加上2乘三角形个数减1的方法,第二种是把每个三角形先按3根小棒来计算,再减去重复的根数。而两个班的学生都还发现了一种,就是先假设每个三角形都只用两根小棒,这样就比实际小算了一根小棒,于是最后再加一根小棒,也就是就2乘三角形的个数后再加1。第一种方法,开始时,学生是很难想到用这种方法来解决问题,大多数学生都没有发现,经老师引导后,成绩好的学生才发现。而第第二种方法,由于有了第一种方法的基础,所以部分思维灵敏的学生能马上想到。倒是2n+1的方法学生更易于理解与接受。现在想来,这也许是没有给学生充分时间独立思考,把规律展示在本子上,再小组内交流,最后集体交流后得出规律,而是看到学生发现规律有困难时,就马上引导学生去思考了,这样局限了学生的思维,才会出现这种状况的吧。

2、评价的方法单调。启发性、激励性、艺术性评价还有待改进。

教育工作者的图形中的规律教学反思【第三篇】

数学课程标准第二学段目标中明确指出:要让学生经历探索给定事物中隐含的规律,使学生的数学思考有条理,并具有一定的归纳能力。北师大版四年级下册“数图形中的学问”一课中,数图形不是“数”而是图形的计数问题,图形计数是研究一个图形中包含基本图形个数,数出某种图形的个数是一类有趣的数学问题,怎样数图形的个数就能做到不重不漏,全部数出来呢?其实最常用的方法就是分类数。这节课我通过让学生亲自数一数的活动,经历从简单到复杂图形计数方法的过程,体验到数图形的不同方法:随意数、按一定顺序数、分类数、利用总结的方法计算等策略,从中感受按照一定方法计数图形的优点,培养了学生认真观察、有序思考和学会归纳总结的思维品质,促进学生思维能力的发展。

一、目标定位要准确,注重计数图形与归纳方法相结合。

“数图形中的学问”一课,教材编排相对简单,仅限于这种单一的线段、角、三角形、长方形的计数。而数学老师都知道,与本课相关的辅导内容却是很多的,如组合的数三角形、长方形、正方形、长方体等等。另外,这种简单的图形计数隐含了一个背景知识“等差数列的求和”这一知识点,四年级除了个别学习奥数的学生知道以外,大部分学生并不了解。因此,在设定目标的时候注重图形的计数与方法的归纳,而没有把重点放在等差数列求和的方法上。当个别学生会用等差数列求和公式和求线段的公式时,我也并没有过多的讲解,而将重点放在了计数图形方法的探究如何列式解决图形个数的问题上。

新课程理念强调从现实情境中引出数学概念,让学生经历数学抽象的过程,从中感受数学的现实背景,体会到数学来源于生活。是而数图形在现实生活中的原型之一就是“有几种不同的车票”,以前老师为了更体现数图形数生活的联系,就设计了学生熟知的有几种不同的汽车票的情境,而现实生活是汽车票一般都是“一元通”不管到哪个站都是一元钱或两元钱。所以我设计了“单向的火车票有几种”的情境,因为现实生活中,火车票一般不会是一个价格坐到任何地点。而且我设计的是单项的火车票有几种,避免了求出线段条数后还要乘2的情况,因为两地之间有几种火车票存在方向问题,a地到b地和b地到a地是需要两种不同的票。看似简单的引入,其实是老师精心的设计,使本课的引入简洁有效。

关于如何数角、数三角形、数长方形,有的孩子已经掌握,也懂得按照一定的顺序数,对于稍复杂的图形就不知所以然,这是孩子们学习的起点。正是准确的把握了这个起点,尊重了孩子们已有知识,注重方法的探寻。整节课围绕“你是怎样数的?”和“你是怎么算的?”这一中心问题展开教学。有序地数图形大部分学生都会,因此我在上课开始时就引导学生用自己的方法数出简单图形的个数,当学生说出数线段的两种不同方法后,就引导学生总结出计算图形个数的方法,并立刻加以运用。学生经历由利用已有经验去“数”,到运用自己总结的方法去“算”的过程,在解决问题的过程中,他们获得了积极的情感体验。

教育工作者的图形中的规律教学反思【第四篇】

1、如何创设有效情境让学生提出问题。这一环节我没有充分体现,而只是课前让学生猜谜语激发学生的兴趣,没有充分地利用情境让学生自己提出问题。

2、如何引导学生运用数学知识和技能理解问题、分析问题、解决问题。这点在教学过程中引导的很到位。老师先提出问题让学生通过小组活动操作再讨论发现规律,并能及时地让学生应用知识解决问题。你想摆几个呢?需要几根小棒?在小组中说说。既给学生时间又给学生空间。让学生感受学数学的乐趣和用处。

3、如何引导学生在学习过程中使用不同的策略。这一点在教学中是重点也是难点,这节课突破了,着重让同学在教师的帮助下想出多种方法,学生想出了三种方法,并能择优运用。这也是本节课的一个亮点。

4、如何合作交流,帮助解决问题。整堂课教师只是起到引导的作用,老师把主动权交给学生了,让学生在小组中获得成功的体验与享受,小组中互相帮助解决了本节课的重点。

5、如何对过程作出反思与评价。这一点作得不够,老师只是在课的总结时让学生反思而在教学过程中没有体现出来。

总之。本节课充分体现了新课改所提倡的'“数学学习不是一个简单的、被动的接受过程,而是学生自己体验、探索、时间活动的过程”。这一理念,课堂上学生的个性特长和学习优势得到充分地发挥本节课是北师大版四年级数学下册的教学内容,是在学习了“方程”一章基础上,安排的三个专题实践活动之一,意在让学生经历一个直观操作、探索发现的过程,体验发现规律的方法,综合运用所学知识,解决简单的实际问题,并渗透一些简单的函数思想,学会一些数学思考的方式、方法。

教育工作者的图形中的规律教学反思【第五篇】

在往日的古诗词教学课堂上,教学模式单一、死板,学生只是机械的翻译,辛苦地背诵,缺乏与诗人、诗情的共鸣,无法体会到传统文化的`魅力。经过这次培训,我有了新的认识,因此,上周在上《词五首》时做了一些新的设计,希望有所突破。

将五首词作重新安排,按婉约派和豪放派分成两部分教学。同时为了避免多篇教学和比较阅读容易变得零碎混乱的问题,我做了一些引导,比如,对一种相思,两处闲愁的比较;三首爱国词的朗读处理;三位爱国者形象的体会,这样让学生既有明确的方向,又能自由发挥。

诗词教学切忌只究词句而忽略诵读。在本课教学中,我设计了学生的大声自由朗读,想象画面朗读,教师的动情朗读等多种诵读方式,以读带品,尽可能让学生读出诗意,读出诗情,读出诗境。不过很多学生在朗读时虽有感情,但处理方式稍显单一,且个人诵读时还比较害羞,放不开。

教育工作者的图形中的规律教学反思【第六篇】

1、感受点阵的数学、生活魅力。

2、数形结合,解决问题。

板书设计:

正方形数相同数连续奇数连续自然数倒加。

1=11。

4=22=1+3=1+2+1。

9=33=1+3+5=1+2+3+2+1。

16=44=1+3+5+7=1+2+3+4+3+2+1。

25=55=1+3+5+7+9=1+2+3+4+5+4+3+2+1。

长方形数?

教后反思:

在对教材进行了深入的分析、挖掘和整合后,结合本次活动研究主题,把《点阵中的规律》分两课时进行,本课时以数形结合为主线,着重让学生通过研究正方形点阵、长方形点阵,发现相同数之积和连续数之积的特点;然后让学生在练习中感受到图形的直观形象,数的简洁细致;最后激发学生运用数形结合的思想解决一些有挑战性的问题。学习形式和课堂呈现上,高段学生对学习有用的数学应该更加感兴趣,所以,这节课主要用数学本身的内容来吸引学生,在研究几何形数的过程中丰富学生对数学发展的认识,感受数学文化的魅力。教学主要分三个层次:在教师帮助下研究正方形点阵,发现正方数的.特点;运用这种研究方法自主研究长方形点阵;运用数形结合思想解决实际问题,感受数学的魅力。

在课堂实践中,给了学生极大的探索自由,学生的思维非常活跃,对正方形点阵进行了多种角度的分析,深刻体悟到正方形数的奥妙,也获得了借助点阵分析数的方法。虽然课堂内未能按预设让学生对长方形数自主探索(时间不够,学生对正方形点阵很着迷,研究了很久),但相信他们已经有了自主发现的能力,课后,定能运用学到的研究方法去独立地研究长方形数的特点。

教育工作者的图形中的规律教学反思【第七篇】

《图形中的规律》这个专题旨在让学生经历一个直观操作、探索的过程,体验发现规律的方法。但对于具体所涉及到的规律是什么,对学生来说是个难点,我这一节课的设计,就是要突破这一难点,发展学生数学思维能力。

课前,张老师播放音乐,让学生听音乐打拍子,了解音乐节奏是有规律的,然后揭示主题—————图形也有规律。这样的谈话轻松自然,使学生能够在愉快的教学环境中学习,更能激起学生探究知识的欲望。

数学思考的形成不仅要借助于一定的数学情境,更应通过深入的探究性实践活动,让学生在活动中逐步领悟。针对这一点,在探究第一个主题图有什么规律时,张老师能够放手让学生利用手中的小棒去操作、去观察,并结合研究报告单和自学提示得出结论:每多摆1个三角形就多用2个小棒。但这时,张老师并没有让学生止步,而是激发学生探究的欲望,解决更深层次的问题。张老师又让学生变换角度思考,通过课件演示,引导学生探索发现出这个图形的另外的规律,培养学生多角度看待问题。

“为学生提供充分思考、充分交流的机会”是新课标提出的基本理念。课堂上在发现摆三角形的规律之后,张老师又让学生用自己喜欢的方法来解决正方形的拼摆规律,为学生留出了较为充裕的思考与实践的时间。从学生的汇报中形成了师生、生生之间的有效互动。这一过程将促进学生对发现规律方法的理解,从而达到“资源共享,有效互动,促进理解”的目的。

为了帮助学生更好的理解图形的规律,我们组经过反复研究讨论,在课的`结尾设计了让学生观察蜂巢、建筑等图片,帮助学生认知、理解这种图形的作用,从而与生活实际联系,发展学生数学思维能力,把所学知识应用到生活中去。

从今天的效果来看,我的教学是比较成功的,教师积极引导,学生主动参与,在经历直观操作、探索发现的过程中,学生的思维得到了发展,促使学生学会思考,让学生学会从多角度中去思考问题。

教育工作者的图形中的规律教学反思【第八篇】

在执教过后,我认为本课实现了预期的教学目标,是一堂扎实有效的数学课,成功之处主要有以下几点:

1、准确定位学习起点,保证学生有效起步。

维果茨基认为,教学必须立足于学生的最近发展区,才能促进学生的发展。作为学习起点的数学活动,必须是不用老师教,每个学生都能达到的学习水平。教师紧扣教材,把教材中探索正方形点阵的第一问和第二问当成学生的学习起点,让学生自主解决,探索规律,保证了每一位学生都能尝到成功的喜悦,为下面的学习做好知识上的、心理上的铺垫。

2、以探索活动为主线,实现学生自主学习。

著名数学家弗赖登塔尔认为“数学是一种活动”,据此原理,教师设计了五个层层递进、环环相扣的数学探索活动,活动目的明确,由浅入深。学生在第一个数学探索活动取得成功时,教师十分重视引导他们总结学习方法,正方形点阵的成功探索为长方形点阵和三角形点阵的探索提供了活动经验、方法步骤,学生的自主学习便有了依据、有道可循。

3、设计精心提问的问题,引导学生有效探究。

课堂上的提问是否有效往往决定着课堂的实效性。在每一个探索活动中,教师都精心设计了符合学生学情的提问。如第一个探索活动中“交流:(1)为什么可以用乘法算式来表示点阵中的点数?(2)在解答过程中,你认为正方形点阵有什么规律?”第三个探索活动中“你能尝试用不同的形式划分正方形的点阵,看看有什么新发现吗?”这样的课堂提问适时,能促进学生思考,利于学生进一步探究。

4、注重数学思想渗透,发展学生能力。

本课主要引导学生体会“数形结合”的思想。华罗庚先生说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。”教师在导入设计了“形可以表示数,用形还可以研究数”的环节,引导学生初步感受形与数的关系,再通过观察一列数与观察拐弯分的正方形点阵,让学生再次感受数与形的`结合,感受到形的直观,发展数感和空间想象力。

有缺憾的课堂才是真实的课堂。这堂课的不足主要有:

1、在探索出正方形点阵的三个不同的规律后,教师和学生一起对这三个规律的探究过程做了回顾,却忘了在三个算式之间划上等号。

2、在探究正方形点阵的第二个规律时,教师采用讲解的方式直接出示拐弯分的第五个正方形点阵,省去了学生探究的时间,当时是考虑全然放手让学生自主探究,难度太大,且未必能有所发现,即使有所发现,也将是个别学生的发现,更多的学生的学习将是低效甚至是无效的。但如果教师设计了学生的反思活动,将更有利于学生的“再创造”。如教师可提出要求:“请画出每次增加的点数对应的正方形点阵中是哪几个?”这样,学生便能通过动手画一画,画出拐弯分的正方形点阵来,而非教师直接出示,更能让孩子们感受到“我是创造者”的喜悦。

相关推荐

热门文档

40 2313476