2024年有理数的加法教案湘教版 有理数的加法教案第一课时3篇
【请您参阅】下面供您参考的“2024年有理数的加法教案湘教版 有理数的加法教案第一课时3篇”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!
有理数的加法教案湘教版 有理数的加法教案第一课时【第一篇】
1、进一步理解有理数加法的实际意义;
2、经历探索有理数加法法则的过程,理解有理数加法法则;
3、感受数学模型的思想;
4、养成认真计算的习惯。
对话探索设计
1、第一天赢利,第二天还赢利,两天合起来算,是赢利还是亏本?
2、第一天亏本,第二天还是亏本,两天合起来算,是赢利还是亏本?
3、一个物体作左右方向的运动,规定向右为正。如果物体先向左运动5m,再向左运动3m, 那么两次运动后总的结果是什么?
假设原点为运动起点,用数轴检验你的答案。
有理数加法法则第1条是:同号两数相加,取___________,并把绝对值_________.
这条法则包括两种情况:
(1)两个正数相加,显然取正号,并把绝对值相加,例(+3)+(+5)=+8;
(2)两个负数相加,取_____号,并把______相加。例如(-3)+(-5) = -(3+5) = -8.答案-8之所以取-号,是因为______________,8是由_____的绝对值和______的绝对值相______而得。
1、上午6时的气温是-5℃,下午5时的气温比上午6时下降3℃, 下午5时的气温是多少?
2、第一场比赛红队胜黄队5:2,第二场比赛蓝队胜黄队3:1, 两场比赛黄队净胜几个球?
3、第一天向北走-30km,第二天又向北走-40km,两天一共向北走多少km?
4、仿照(-3)+(-5) = -(3+5)= -8的格式解答:
(1)-10+(-30)=
(2)(-100)+(-200) =
(3)(-188)+(-309)=
1、第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?如果第二天亏本120元呢?
2、第一天赢利,第二天亏本,两天合起来算,是赢利还是亏本?
3、正数和负数相加,结果是正数还是负数?
有理数加法法则第2条的前半部分是:绝对值不相等的异号两数相加,取_________________的符号,并用_______________减去_________________.
例如(+6)+(-2) = +(6-2) = +4.答案+4之所以取+号,是因为两个加数(+6与-2)中________的绝对值较大;答案+4的绝对值4是由加数中较大的绝对值______减去较小的绝对值____得到。
又例,计算(-8)+(+3)时,先取______号,这是因为两个加数中,______的绝对值较大。然后再用较大的绝对值____减去较小的绝对值____,得_____,于是最后得到答案是______.计算的过程可以写成(-8)+(+3) = -(8-3) = -5.
有人说,正数和负数相加时,实质就是把加法运算转化为小学的减法运算。他说的对不对?
1、第一场比赛红队胜黄队5:2,第二场比赛黄队胜蓝队3:1, 两场比赛黄队净胜几个球?
2、如果物体先向右运动5米,再向右运动-8米,那么两次运动后总的结果是什么?
3、 检查3包洗衣粉的重量(单位:克), 把其中超过标准重量的数量记为正数,不足的数量记作负数,结果如下:
-,+,-
这3包洗衣粉的重量一共超过标准重量多少?
4、仿照(-8)+(+3) =-(8-3) = -5的格式解题:
(1)(-3)+(+8)=
(2)-5+(+4)=
(3)(-100)+(+30)=
(4)(-100)+(+109)=
有理数加法法则第2条的后半部分是:互为相反数的两个数相加得_____.
例如(+3)+(-3) = ______,(-108)+(+108) = ______.
p21.例1,例2
p22.练习2(按例1格式算。)
p29.习题 1, p32.习题 8,9,10
用一个□表示+1,用一个■表示-1.显然□+■=0,
(1)■■+□□□=(■+□)+(■+□)+ □=_____.
这表明-2+3=+(3-2)=1.
想一想:答案为什么是正的?为什么转化为减法运算?
(2)计算■■■■■+□□□□□=_____.
(3)计算■■■■■+□□=(■■+□□)+ ■■■=______.
这说明-5+(+2)=-(___-___)=_______.
(4)计算■■■+□□□□□=?
有理数的加法教案湘教版 有理数的加法教案第一课时【第二篇】
1、在现实背景中理解有理数加法的意义。
2、经历探索有理数加法法则的过程,理解有理数的加法法则。
3、能积极地参与探究有理数加法法则的活动,并学会与他人交流合作。
4、能较为熟练地进行有理数的加法运算,并能解决简单的实际间题。
5、在教学中适当渗透分类讨论思想。
异号两数相加
和的符号的确定
(师生活动)设计理念
引入课题回顾用正负数表示数量的实际例子;
在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?
师:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大家探讨的问题。
(出示课题)让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要性,激发学生探究新知的兴趣。
1、探究新知如果是球队在某场比赛中上半场失了两个球,下半场失了3个球,那么它的得胜球是几个呢?算式应该
怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?
(学生思考回答)
思考:请同学们想想,这支球队在这场比赛中还可能出现其他的什么情况?你能列出算式吗?与同伴交流。
学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况。
2、借助数轴来讨论有理数的加法。
一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作—5m。
(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义。
(2)交流汇报。(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)
(3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?
(4)在学生归纳的基础上,教师出示有理数加法法则。
1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
3、一个数同。相加,仍得这个数。再次创设足球比赛情境,一方面与引题相呼应,联系密切,另一方面让学生在此情境中感受到有理数相加的几种不同情形,并能将它分类,渗透分类讨论思想。
①假设原点0为第一次运动起点,第二次运动的起点是第一次运动的终点。
②若学生在学习小组内不能很好地参与探究,也可以让其参照教科书第21页的“探究”自主进行。
③让学生感受“数学模型”的思想。
④学会与同伴交流,并在交流中获益。培养学生的语言表达能力和归纳能力,也许学生说得不够严谨,但这并不重要,重要的足能用自己的语言表达自己所发现的规律解决问题解决问题。
小结与作业
课堂小结通过这节课的学习,你有哪些收获,学生自己总结。
本课作业必做题:阅读教科书第20~22页,教科书第31习题1。3第1、12、第13题。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1、在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙迷)有理数加法法则的过程。
2、注意渗透数学思想方法。数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等)。如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号,一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法。
3、注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听
有理数的加法教案湘教版 有理数的加法教案第一课时【第三篇】
1、 通过学习,能感受到数学知识来源于生活又可应用于实际生活,激发学习的兴趣。
2.通过探索,能归纳总结出有理数加法法则,理解有理数加法的意义渗透分类思想。
3.掌握有理数加法法则,并能准确地进行有理数加法运算。
重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;
难点:异号两数如何相加的法则。
一、 预习自学:
1、蛋糕店上半年挣5万,下半年挣3万,请问一年共挣多少钱?
2、蛋糕店上半年赔5万,下半年赔3万,请问一年共挣多少钱?
3、蛋糕店上半年挣5万,下半年赔3万,请问一年共挣多少钱?
4、蛋糕店上半年赔5万,下半年挣3万,请问一年共挣多少钱?
5、蛋糕店上半年挣5万,下半年赔5万,请问一年共挣多少钱?
6、蛋糕店上半年赔5万,下半年挣0万,请问一年共挣多少钱?
请你列式计算,并引导学生对前面的七个加法运算进行合理的分类探讨:和的符号怎样确定?和的绝对值怎样确定?(小组讨论展示)
二、 教师点拨
知识点一:引导学生对前面的七个加法运算进行合理的分类
同号两数相加: (+5)+(+3)= ______.(-5)+(-3)= ______
异号两数相加:(+5)+(-3)= ______;(-5)+(+3)= ______;
(+5)+(-5)=______
一数与零相加: (-5)+0=______;
知识点二:探讨:和的符号怎样确定?和的绝对值怎样确定?
结论:有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
三.例题精讲;例1(学生自学,教师示范。注意解题步骤)
四、课堂练习;36页随堂练习与习题(小组展示交流)
五、当堂检测;
1.用生活中的事例说明下列算是的意义,并计算出结果:
(-2)+(-3);(-3)+2
2.有理数加法法则:
绝对值不相等的两数相加,取绝对值的加数的符号,并用较大的绝对值较小的绝对值。 互为相反数的两个数相加得。
3.计算:(+15)+(-7);(-39)+(-21);
(-37)+22;(-3)+(+3)
有理数的加法教案湘教版 有理数的加法教案第一课时【第四篇】
1通过学生身边可以尝试、探索的场景,经历有理数加法法则得出的过程,理解有理数加法法则的合理性。2能进行简单的有理数加法运算。3发展观察、归纳、猜测验证等能力。
重点:有理数加法法则的得出,和的符号的确定;难点:异号两数相加
一激情引趣,导入新课
1我们早知道正有理数和零可以做加法运算,所有的有理数是否都可以进行加法运算呢?这就是我们这节课要研究的问题,先来分析一下,所有的有理数相加的时候有哪些情况呢?请你想一想
2从前有一个文盲记录家里的收入和支出的时候是这样的,用一颗红豆代表收入一文钱,用一颗黑豆代表支出一文钱,有一个月他发现记账的盒子里有10颗红豆6颗黑豆,他发现红豆比黑豆多了4颗,于是他不仅知道了这个月结余了4文钱还知道了自己这个月的收入和支出情况。我们可以用一个图形来表示他这种记账方式。“○”,“●”分别表红豆和黑豆。
,这个图形其实就是一个有理数的加法算式:(+10)+(-6)=+4下面我们借助数轴来理解有理数的加法运算。
二合作交流,探究新知
以原点为起点,规定向东的方向为正方向,向西的方向为负方向,一个单位代表1千米
1同号两数相加
小亮从o点出发,先向西移动2个千米休息一会儿,再向西移动3个千米,两次走路的总效果等于从点o出发向_____走了_______千米,用式子表示为_______________.
从上,你发现了吗,同号两数相加结果的符号怎么确定?结果的绝对值怎么确定?请把你的发现填在下面的框里。
同号两数相加,取__________的符号,并把它们的_____________相加。
2异号两数相加
(1)小明先从点o出发,先向东走4千米,发现口袋里的钥匙丢了,急急忙忙掉头向西走了1千米,找到了掉在路边的钥匙,小明这两次走路的效果总等于从点o出发向___走了____千米,用式子表示为_________________________.
(2)小李先从点o出发,先向东走了1米,突然想起今天家里有事,赶紧掉头向西往家里走,走了3千米到达家中,小李两次走路的总效果等于等于吃哦从点o出发,向___走了
_____千米。用式子表达为_______________________.
从上面例子,你发现了异号两数怎么做吗?把你的结论填在下框中。
异号两数相加,绝对值不相等时,取__________________的符号,并用_________的绝对值
减去_______________的绝对值。
3一个数和零相加,以及互为相反数相加
(1)某个人第一批货获得利润3万元,第二批货物保本,这两批货物总的利润是多少万元?
(2)某人第一批货物的利润是5万元,第二批货物亏损5万元,这两批货物总的利润是多少?
从上问题,你发现了什么?把你的结论写在下框中,
互为相反数的两个相加得_______,一个数和零相加,任得____________________.
三应用迁移,拓展提高
例1计算(1)(-8)+(-12)(2)(-)+(-)
(3)(-5)+9(4)(–10)+7
例2计算(1)(-3)+(2)(-)+(-)
例3填空
(1)-7+____=0(2)(+)+______=-(3)____+(-)=(4)__+=
四课堂练习,巩固提高
p21
五反思小结巩固提高
有理数的加法法则有哪些?请你把它们写在下面:
1
2
3
4
六作业p24-25a组1-4b1