小学六年级圆教案设计 六年级数学教学设计实用(优推5篇)
【导读预览】此篇优秀范文“小学六年级圆教案设计 六年级数学教学设计实用(优推5篇)”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!
小学六年级圆教案设计【第一篇】
1.通过复习近平面图形的变换方法,整体上进一步把握图形与变换的意义和方法。
2.会用平移、旋转的方法改变图形的位置,能按比例放大、缩小图形,培养学生的动手实践能力。
4.通过复习,进一步体会平移和旋转、放大与缩小的方法,激发学生的学习热情,培养学生的创新意识。
教学准备:教师准备教学光盘
1.提问:你知道变换图形的位置的方法有哪些?
引导学生说出变换图形的位置的方法主要是平移和旋转。
火车、电梯和缆车的运动是平移;风扇叶片、螺旋桨和钟摆的运动是旋转。与时针旋转方向相同的是顺时针旋转,方向相反的是逆时针旋转。
2.怎样能不改变图形的形状而只改变图形的大小?
引导学生说出运用放大和缩小的方法可以只改变图形的大小,而不改变图形的形状。
3.比较平移与旋转与放大和缩小这两种方法有什么联系和区别?
区别:平移和旋转不改变图形的大小,只改变图形的位置。而放大和缩小不改变图形的形状,只改变图形的大小。
联系:两种方法都不改变图形的形状。
引导学生得出:长方形、正方形、等腰三角形、等边三角形、等腰梯形、圆都是轴对称图形。长方形有2条对称轴,正方形有4条对称轴,等腰三角形和等腰梯形有1条对称轴,等边三角形有3条对称轴,圆有无数条对称轴。(教师出示相应的图片)
先让学生独立判断,然后结合学生的判断,进一步明确轴对称图形的基本含义,即把一个平面图形沿一条直线对折,折痕两边的部分能够完全重合,那么这个图形叫做轴对称图形。接着让学生画出轴对称图形的所有对称轴。
可以先让学生按要求依次进行操作,再通过交流帮助学生进一步明确相关的操作方法。
其中画出一个图形的另一半使它成为一个轴对称图形,以及画出一个图形旋转或平移后的图形,都可以先找出一些重要的点或线段,然后确定这些点或线段在另一半图形中的位置,或平移旋转后的位置,最后连一连。
要使学生认识到:决定平移后图形位置的关键是平移的`方向和平移的距离。决定旋转后图形位置的关键是旋转的方向和旋转的角度。
把一个图形按指定的比例放大,可以先在原图中找到平行四边形的底和高,算出放大后的底和高,然后画出放大后的这些线段,最后连一连。
要让学生思考按怎样的比是把原图形放大,按怎样的比是把原图形缩小。
可以先让学生讨论确定圆的位置,需要把圆向右移动几格?圆心应画在哪里?画出的圆的大小应与原来的圆大小相等。在此基础上依次解决书上的几个问题。
可以提醒学生以直角三角形的两条直角边作标准,先数一数每条直角边各有几格长,再算一算按指定的比例缩小后又应该是几格长。在此基础上,让学生动手画一画,并进行比较。求出新图形的面积与原来图形面积的比。
可以先让学生观察拼成的两个大正方形图案,说说它们分别是由哪两种瓷砖拼成的?在此基础上,鼓励学生各自按要求设计图案。要提醒学生:第一,每次只能选择两种瓷砖;第二,每种瓷砖都可以适当旋转。
展示学生设计的图案,及时组织学生互相评价。
通过复习,你对图形变换方面的知识又有了哪些新的认识?
完成《补充习题》的相关练习。
小学六年级圆教案设计【第二篇】
教学目标:
1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。
2、培养学生类比、推理和概括思维能力。
教学重点:
1、理解比的基本性质。
2、运用比的基本性质进行化简比。
一、探究新知
(一)比的基本性质
1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?----小研究(后附)
(1)4人小组交流(2)全班交流
(3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?
(4)商不变的性质是不是对每个比都适用呢?自己举例试一试。
4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。
5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。
(二)化简比---完成练习题(后附)
1、小组交流
2、全班交流
小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。
结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。
二、巩固练习
1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是。
2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。
3、拓展练习
3:8=(3+6):(8+)
(让学生分小组讨论方法)
三、课堂总结
这节课有哪些收获?师生共同总结。
()年()班姓名
比的基本性质小研究
你知道2:4与6:12这两个比的大小相等吗?你能证明吗?你有什么发现?
小学六年级圆教案设计【第三篇】
教学目标:
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
教学重点:
如何确定每一条跑道的起跑点。
教学难点:
确定每一条跑道的起跑点。
教学过程:
一、 提出研究问题。(出示运动场运动员图片)
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)
2、各条跑道的起跑线应该向差多少米?
二、 收集数据
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85。96m,第一条半圆形跑道的直径为72。6m,每一条跑道宽1。25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)
三、 分析数据
学生对于获取的数据进行整理,通过讨论明确一下信息
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、 得出结论
1、看书p76页最后一图
2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1。25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2。5m)
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2。5)
五、 课外延伸
200m跑道如何确定起跑线?
小学六年级圆教案设计【第四篇】
分数乘法应用题
1、引导学生准确地找到单位“1”。
2、能准确找出数量关系。
3、能熟练地解答一步和二步的乘法应用题。
引导学生找准单位“1”,分析应用题的数量系。
让学生正确、独立地分析应用题的数量关系。
我们已经对分数乘法进行了学习,今天这节课我们就一些简单的分数应用题进行复习。
1、复习解答分数乘法应用题的步骤:
学校买来100千克白菜,吃了4/5,吃了多少千克?
如果想求出吃了多少千克,要分哪几步去思考?怎样分析这道题?
(1)找到题目中的分率句,确定单位“1”。
(2)找出数量关系。
(3)求出所要求的部分量。
1.指出下面每组中的两个量,应把谁看做单位“1”。
(1)男生人数占女生人数的4/5。()
(2)甲的6/7相当于乙。()
(3)乙的5/9与甲相等。()
(4)男工人数是女工人数的1/8。()
2、填空题
(1)、学校买来新书240本,其中的1/8分给五年级。这里是把()看作单位“1”,如果求五年级分到多少本?列式是()。
(2)、小红有36张邮票,小新的邮票是小红的1/2,小明的邮票是小新2/3的`。如果求小新的邮票有多少张?是把()看作单位“1”,列式是()。如果求小明有多少张是把()看作单位“1”,列式是()。
3、应用题
(1)、一堆煤12吨,又运来它的1/6,现在共有煤多少吨?
指生板演,集体订正,针对学生出现的问题进行评价。