首页 > 公文资料 > 其它公文 >

教师的数学教学与直线方程教学反思热选【精彩8篇】

网友发表时间 2269429

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“教师的数学教学与直线方程教学反思热选【精彩8篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

教师的数学教学与直线方程教学反思【第一篇】

学习解析几何知识,"解析法"思想始终贯穿在全章的每个知识点,同时"转化、讨论"思想也相映其中,无形中增添了数学的魅力以及优化了知识结构。在学习直线与方程时,重点是学习直线方程的五种形式,以直线作为研究对象,通过引进坐标系,借助"数形结合"思想,从方程的角度来研究直线,包括位置关系及度量关系。大多数学生普遍反映:相对立体几何而言,平面解析几何的学习是轻松的、容易的,但是,也存在"运算量大,解题过程繁琐,结果容易出错"等致命的弱点等,无疑也影响了解题的质量及效率。

中也是遵循上述思路开展教学的,而且也取得了一定的效果。下面谈一下对直线与方程的教学反思:

(1)教学目标与要求的反思:

基本上达到了预定教学的目标,由于个别学生基础较差,没有达到教学目标与要求,课后要对他们进行个别辅导。

通过问题引入,从简单到复杂,由特殊到一般思维方法,让学生参与到教学中去,学生的积极性很高,但师生互动与沟通缺少一点默契,尤其基础较差的学生,有待以后不断改进。

基本上达到了预定教学的效果,通过数形结合思想方法,培养学生能提出问题和解决问题的思维方式,学会反思,从而提高学生综合解题的能力。

教师的数学教学与直线方程教学反思【第二篇】

先前认真阅读了这一单元的教材,发现与老教材有较大的变化。又认真阅读了备课手册上侯正海老师的文章《初步体会方程的思想——“方程”教学建议》。于是对方程教材的编排体系有了大致的了解。

昨天让学生预习:数学教材1到2页,并且完成《补充习题》第一页。预习的好处显而易见,我发现:学生对于列方程问题不大(只是少数学生在列方程时写单位),问题大量地出在对“等式”“方程”“式子”的.概念的理解和区分上。所以,今天这堂课的难点就是让学生深刻理解和熟悉“等式”和“方程”的概念及其联系和区别。

教学过程简录:口算;教学例1,理解等式;教学例2,理解等式与不等式,把等式分类,分成不含未知数的等式和含有未知数的等式,揭示方程的概念,解释50+50=100,x+50〈200,x+8不是方程的原因;订正〈补充练习〉第一题;揭示等式和方程的区别和联系——等式包括方程,方程是一类特殊的等式;让学生做“试一试”,比较根据第二张图列的方程12+x=20,一位学生补充了20-x=12,我补充了20-12=x,先确定这三个等式都是方程,但第三个方程一般是不列的,因为根据20-12可以直接得出答案,它就相当于算术方法解题了。我强调:看完图,顺向思维,直接得到的方程,一般是最好的——点到位止,我知道学生对于我的话不一定理解的,就给予一定的暗示和渗透吧。完成“练一练”,重点是第一题(我让学生写出来的)。

反思:由于难点吃透,学生对于方程的意义已经掌握了——做到能背能举例能比较能说明,但在“练一练”的回答上我有疑惑。哪些是等式,哪些是方程。我估计教材的意图是指哪些是不包括方程的等式,哪些是方程,我也是按这样的要求让学生写的,但我还是让学生说说方程全部是等式。教学后,总感别扭。“哪些是等式,哪些是方程”的问法是二分法,所以我才让学生写等式时不写方程。如果这样要求,哪些是等式?再把等式中的方程找出来。这样要求,可能更加清楚,不会让我疑惑了。

教师的数学教学与直线方程教学反思【第三篇】

《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。

探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形,从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。

在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。

“反思是数学的重要活动,是数学活动的核心和动力”,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,“数学日记”就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。“数学日记”该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。

作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。《人教版九年级数学下册。

教师的数学教学与直线方程教学反思【第四篇】

各有其局限性。而一般形式的方程虽无任何限制,但几何特征却不明显。通过引导,使学生经历下列过程:首先建立坐标系,将几何问题代数化,用代数语言描述几何要素及其相互关系;进而,将几何问题转化为代数问题;处理代数问题;分析代数结论的`几何含义,最终解决几何问题。通过上述活动,使学生感受到解析几何研究问题的一般程序。由"形"问题转化为"数"问题研究,同时数形结合的思想,还应包含构造"形"来体会问题本质,开拓思路,进而解决"数"的问题。

总之,在直线与方程这一节中,我们以后的教学更应该注重学生能力的培养,让学生自己推导公式,在推导的过程中认识公式,使学生理解公式,从而认识解析法的数学魅力,正确运用解析法,而不是把公式当做是记忆的东西,一味的死记硬背,而忘掉条件限制。

教师的数学教学与直线方程教学反思【第五篇】

依据教学过程、指导教师及学生的反馈信息,本人对本节课有如下几点反思:

根据实际教学过程反映,学生对本节课教授知识点能充分吸收、掌握,课堂学习气氛活跃。

第一、重点突出学生活动。在教学过程中,我设计了五个活动环节:(1)回顾数轴三要素,理解数轴上点的坐标的几何意义;(2)通过类比进行直线参数方程的探究活动;(3)直线参数方程的形成;(4)直线参数方程的简单应用;(5)学生课后的拓展学习。

第二、结合本节课的具体内容,采用学生分组交流,师生互动式教学法。创造机会让不同程度的学生发表自己的观点,调动学生学习积极性,使学生自然而然地渴望进一步了解相关的知识,提高知识的可接受度,进而完成知识的转化,即变书本的知识、老师的知识为学生自己的知识。

第三、在例题设置中注重联系学生实际,通过情境创设,让学生体会数学的应用价值,在教学过程中时刻注意观察学生是否置身于数学学习活动中,是否精神饱满、兴趣浓厚、探究积极,并愿意与老师、同学交流。

第一、在设置问题情境上可以做得更好:比如在课程引入时,根据本节课的内容,如果能适当联系一些生活当中的实例,那么学生思维可能会更活跃些,课堂可能会更丰满些;做练习时,也可以补充一些联系实际的问题。

第二、在学生的自主探究方面可以再放开些:如何引导学生,让学生的数学思维更加的活跃,探索新知的欲望更强烈些。因此,课堂上可以更放开些,大胆的让学生去思、去想、去做,同时要注意把握课堂学习秩序。比如在推导直线的参数方程时,如果让学生合作性的去讨论,并形成正确的认知,那么学生的探究意识在这节课就能体现的更好。

第三、信息技术应用能力有待进一步提高:通过这节课的教与学,我发现自己在实现函数图象过程的动态演示方面还不够得心应手,有的方面还可以向同事学习。

总之,数学科的教学活动,无论是动手实验、合作探究还是交流互动等,都应当为理解数学内容服务;也不是所有数学内容的引入、发现都需要实验操作,特别是在高中阶段,应当更多地引导学生从数学内在的逻辑发展要求去探索数学概念的引入、数学原理的发现等。让学生朝着乐观、积极、自信的方向更好的发展,感受数学课中的快乐与幸福!这也正是积极心理学视野下的数学课堂教学。

教师的数学教学与直线方程教学反思【第六篇】

一元二次方程一课,感触颇深。下面谈一下自己的几点体会:

一、本节课,知识的呈现作了重大调整,不是以讲解为主方式也不是以单一的知识为线条,而是在突出数学知识的同时,将数学知识和结论溶于数学活动之中,这样学生学习数学知识的过程就成了进行数学实验的过程,成了“做学问”的过程。在这样的探究学习过程中,学生得到的数学知识是通过自己实验、观察、讨论、归纳得到的。

二、以问题为主线,解放学生的身心,激发学生的灵感;体现“自主-----合作-----探究”的学习方式,培养学生小组合作的学习能力,让学生感受到过程是自己亲身体验的,结论是自己发现的,知识是自己主动获取并学会的,能够增强学生对学习的信心,再次突出本节课的亮点。

三、把课堂真正的还给学生。我参与,我快乐,我是课堂的主人。放手让学生有话可说,有疑好争,为学生深入思考、积极探索提供机会、做到师生互动、生生互动,在平等、民主、合作的氛围中分享成功的快乐。

四、备情绪,激发兴趣和学习动力,把情绪调整到高涨状态。本节课教师采用多种激励语言,如心动不如行动,跃跃欲试,不如试一试。不怕你说什么,就怕你什么也不说等激发学生兴趣,调动学习动力,把学生的学习情绪调整到比较理想的、十分高涨的状态。

总之,本节课用全新的理念,全新的教学模式,给我全新的感受,为我以后的教学指名了前进的方向。努力实践,打造精品课堂。

教师的数学教学与直线方程教学反思【第七篇】

解析几何的本质是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。在本章节中,学生将在平面直角坐标系中建立直线的代数方程,运用代数方法研究它们的几何性质.用代数方法研究几何思路清晰,可以充分运用各种公式解题,解题方法自然。但是,代数方法一个致命的弱点就是“运算量大,解题过程繁琐,结果容易出错”等等,无疑也影响了解题的质量及效率。新课程理念强调:公式教学,不仅要重视公式的应用,教师更要充分展示公式的背景,与学生一道经历公式的形成过程,同时在应用中巩固公式。在推导公式的过程中,要让学生充分体验推导中所体现的数学思想、方法,从中学会学习,乐于学习。

对直线的.方程的教学应该强调,直线的方程有5种形式,要用哪种形式是与已知条件相关的。并且在教学中一定要强调每种形式的适用范围,以防漏解。

直线的斜率也是学生容易忽略的地方,解题时容易不对斜率讨论而求解,漏掉斜率不存在的情况,在教学中要反复强调的。

借助直线的方程来研究直线的位置关系也是学生第一次接触,数与形的结合,方程与图像的结合,是解析几何的基本研究方法,教学中应反复强调方程中的哪些量与图像中的哪些性质相吻合,学生可以在数与形之间灵活的转化,那么解析几何学起来就轻松多了。

教师的数学教学与直线方程教学反思【第八篇】

《等式与方程》这节课的教学内容较为简单,重点内容是认识方程和方程与等式之间的关系。我在教学这节课内容时通过例1的教学让学生自己总结出什么是等式:含有等号的式子叫等式。再区别等式与我们以前的算式,如8+2是算式,而8+2=10就是等式。

例2是让学生观察天平写出算式,再根据天平的指针是否指向0刻度线来判断左右两边的算式是否相等。接下来回答课本上的问题:“那些是等式?”学生很容易就能回答出右边的两个是等式。那左边的两个叫什么呢?学生们思考了一下,没有一个人能回答的出来,此时我告诉学生这叫不等式。当学生们听了“不等式”三个字之后都笑了,当时我还没有反应过来,当我再说到“不等式”时,我明白学生们为什么会笑了,他们以为我说的是“不懂事”,所以我立马把“不等式”三个字写到黑板上,原来闹了一个小笑话。

对于方程的定义:含有未知数的等式叫方程,学生们明白定义中的关键字是未知数和等式,明白了这点我再问例1中的等式50+50=100是方程吗?学生们说不是,因为没有未知数。方程与等式之间有什么关系?指名几位学生回答,一般都能明白,但语言表述的不是很清晰,最后葛晨曦和赵龙新总结说:方程肯定是等式,但等式不一定是方程,总结的很好。

“练一练”,让学生自己写一些方程,通过指名回答,发现学生们的方程一般都是5x=60、12+x=30等,考虑到学生是否以为未知数只能表示正数?所以我在黑板上写了这样一个等式让学生判断它是否是方程:2+x=0,学生们纷纷说不是,我说它符合方程的定义吗?学生若有所思的说符合,原来未知数还可以表示负数。我接着问未知数除了可以表示正数和负数还可以表示什么?分数和小数,于是我要求他们再写几个未知数能表示分数、小数和负数的方程。未知数我们可以用任何一个字母来表示,但我们习惯性用字母x来表示。等式x+y=20是方程吗?学生们基本上都能回答“是”,原因是因为有上面的思考,对于判断是否是方程,学生们会看方程的定义来判断。

下课后,有学生问我,这样的等式后面要写单位吗?这是我在上课时忽略的地方,含有未知数的等式也就是方程列出来之后,后面不需要带单位。

相关推荐

热门文档

70 2269429