首页 > 公文资料 > 其它公文 >

七年级青岛版数学教案实用(优推8篇)

网友发表时间 2285919

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“七年级青岛版数学教案实用(优推8篇)”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

七年级青岛版数学教案【第一篇】

教学目标:

知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。

过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。

情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。

教学重点:

掌握有理数的两种分类方法。

教学难点:

给定的数字将被填入它所属的集合中。

教学方法:

问题导向法。

学习方法:

自主探究法。

教学过程:

一、形势归纳。

小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?

(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?

(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?

称整数和分数为有理数。(指点题,板书)。

二、自学指导。

学生自学课本,根据课本寻找自学的机会。

提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

三、展示归纳。

1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

四、变式练习。

逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

五、总结与反思:通过本节课的学习,你有什么收获?

六、作业:必做题:课本14页:1、9题。

七年级青岛版数学教案【第二篇】

本课(节)课题认识直棱柱第1课时/共课时。

教学目标(含重点、难点)及。

1、了解多面体、直棱柱的有关概念.

2、会认直棱柱的侧棱、侧面、底面.。

3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.。

教学重点与难点。

教学重点:直棱柱的有关概念.

教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.

内容与环节预设、简明设计意图二度备课(即时反思与纠正)。

析:学生很容易回答出更多的答案。

师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。

1.多面体、棱、顶点概念:

2.合作交流。

师:以学习小组为单位,拿出事先准备好的几何体。

学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描。

述其特征。)。

师:同学们再讨论一下,能否把自己的语言转化为数学语言。

学生活动:分小组讨论。

说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。

师:请大家找出与长方体,立方体类似的物体或模型。

析:举出实例。(找出区别)。

师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:

有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;

侧面都是长方形含正方形。

长方体和正方体都是直四棱柱。

3.反馈巩固。

完成“做一做”

析:由第(3)小题可以得到:

直棱柱的'相邻两条侧棱互相平行且相等。

4.学以至用。

出示例题。(先请学生单独考虑,再作讲解)。

析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)。

最后完成例题中的“想一想”

5.巩固练习(学生练习)。

完成“课内练习”

师:我们这节课的重点是什么?哪些地方比较难学呢?

合作交流后得到:重点直棱柱的有关概念。

直棱柱有以下特征:

有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;

侧面都是长方形含正方形。

例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。

板书设计。

作业布置或设计作业本及课时特训。

七年级青岛版数学教案【第三篇】

2.初步培养学生观察、分析及概括的能力;。

3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议。

一、教学重点、难点。

重点:通过具体例子了解公式、应用公式.

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析。

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构。

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议。

1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例。

公式。

五、教具学具准备。

投影仪,自制胶片。

六、师生互动活动设计。

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

七年级青岛版数学教案【第四篇】

苏教版二年级下册第64--66页例题及想想做做相关内容。

1.知识目标:结合具体生活情境认识角,能正确找出(指出)物体表面或平面图形中的角,知道角的各部分名称,会用不同的方法和材料来做角。

2.能力目标:操作活动中感知角有大小。

3.情感目标:创造性使用工具和材料来制作一个角和比较角的大小的过程中,体验解决问题策略的多样性,培养学生的动手实践能力和创新意识。

在直观感知中抽象出角的形状,知道角的各部分名称。

体验理解角的大小与两边开叉的程度有关。

实物投影仪、ppt、小棒、线、纸片、三角尺等。

(二)利用学生已有认知经验,导入新课。

1.从生活中的角引入数学图形中的角。

师:板书“角”字。

谈话:看到这个字你能想到些什么?

今天这节课我们来研究数学图形中的角。

2.揭示并板书课题:认识角。

(三)引导探究角。

(3)联系实际,感知角的特征。

谈话:角是个调皮的娃娃,特别喜欢玩捉迷藏,你能在这些物体的面上找到角吗?

出示扇子、三角尺、钟面、剪刀的图片。

同桌一起找一找。

汇报交流,总结。

(二)抽象图形,形成表象。

1.抽象出图形。

谈话:让我们把角从物体中请出来。

说一说,他们有什么相同的特征?

引导说出:尖尖的,直直的。

2.摸角,感受角的特征,明确各部分名称。

谈话:请同学们拿出三角尺。

为什么把它叫做三角尺?

你能指出三角尺上的各个角吗?

摸一摸三角尺上有角的地方,在手心轻轻按一下,看看留下了什么?

再摸一摸尖尖地方的两旁,有什么感觉?

尖尖的地方是角的一个组成部分,叫顶点。

直直的两条线是角的边。

3.画角。

边画边讲解画角的步骤。

4.快速说出屏幕上角的各部分名称。

5.清晰角的表象。

师:请同学们闭上眼睛回忆一下我们刚刚认识的角是什么样的,把它记在心里。

6.根据学习经验,准确辨认角。

这些图形,哪些是角,哪些不是角?

学生做出判断,并说出判断的理由。

7.数出平面图形中的角。

谈话:看同学们学的这么认真,图形朋友们也想考考大家,想接受挑战吗?

出示图形,数出每个图形里各有几个角。

学生汇报结果,并指出每个图形里的角。

8.寻找生活中的角。

(1)谈话:小朋友们已经认识了角,能够准确辨认角,还能数出图形里到底有几个角,真了不起!

其实我们的身边到处都藏有角,仔细观察,你还能在哪些物体的面上找到角?

(2)同桌互相指。

(3)汇报交流,规范指角的方法。

(三)动手操作,体会角的特征。

1.创造角。

(1)明确要求。

每种材料只做一个角。

小组合作,比比哪个组的小朋友手最巧,变出的角最多。

(2)动手创造。

学生分组活动,教师巡视,了解情况。

(1)展示成果。

谈话:哪位同学能勇敢地来展示自己的作品,并说给大家听听你是怎样做的?

学生阐述自己做角的过程,并指出所做角的各部分名称。

(4)小结:小朋友们真能干,用自己的双手做出这么多的角,真了不起。

2.比较角的大小,感受角的大小与两边叉开的程度有关,与边的长短无关。

(1)活动角游戏。

谈话:这位同学做的角真有趣,还可以自由活动呢,我们可以把它叫做活动角。

其他小朋友有做了活动角的吗?

我们一起来做个小游戏吧。

3.感受叉开程度与角大小的关系。

谈话:你是怎样把角变小的?

你是怎样把角变大的?

学生汇报自己的发现,总结。

4.感受边的长短与角的大小无关。

谈话:角变大和变小的时候,边的长短改变了吗?

5.比较角的大小。

(1)出示习题。

(2)独立思考,汇报结果。

三、巩固深化,再创造。

1.出示正方形。

谈话:如果把正方形纸沿一条边剪去一个角后,还剩几个角?

2.猜想一下,并动手验证你的猜想。

同桌合作,动手操作。

3.汇报交流。

4.演示,总结。

四、欣赏角的美丽身影,总结全课。

1.欣赏。

(1)谈话:角的世界就是这样变化多端而又奥妙无穷,需要我们不断去探索。因为角的存在,我们的生活也变得更加多姿多彩。让我们一起来欣赏生活中角的美丽身影吧。

(2)课件一次出现金字塔、五角大楼、乡村木屋等图片,教师介绍,学生欣赏。

2.总结全课。

师:今天这节课,我们认识了新朋友——角。

你们对自己这节课上的表现满意吗?

用一个手势来表示自己的心情吧。

看到角了吗?

请同学们课后继续探索角的奥秘!

七年级青岛版数学教案【第五篇】

一、情景引入(复习引入)。

1、求下列和数的算术平方根4、9、100、9/16、。

2、如果一个数的平方等于9,这个数是多少?

讨论:这样的数有两个,它们是3和-3.注意中括号的作用.

又如:,则x等于多少呢?

二、探索新知。

1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.

求一个数的平方根的运算,叫做开平方.

例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算.

2、观察:课本p45的图

图中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.并根据这个关系说出1,4,9的平方根.

例4求下列各数的平方根。

(1)100(2)(3)。

3、按照平方根的概念,请同学们思考并讨论下列问题:

正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?

一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示.

例5说出下列各式的意义,并求出它们的值。

归纳:平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

4、堂上练习:课本p46小练习1、2、3。

三、归纳小结(学生归纳,老师点评)。

1、什么叫做一个数的`平方根?

2、正数、0、负数的平方根有什么规律?

3、怎样求出一个数的平方根?数a的平方怎样表示?

四、布置作业。

五、板书设计:

平方根。

1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.

2、a的平方根记为:

3、平方根的性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

1已知第一个正方形纸盒的棱长是6厘米,第二个正方形纸盒的体积比第一个正方形纸盒的体积大127立方厘米,试求第二个正方形纸盒的棱长.

1.下面说法正确的是()。

是2的平方根。

是4的算术平方根。

的算术平方根不存在。

d.-1的平方的算术平方根是-1。

答案:b。

知识点:平方根;算术平方根。

解析:

解答:a、4不是2的平方根,故本选项错误;。

b、2是4的算术平方根,故本选项正确;。

c、0的算术平方根是0,故本选项错误;。

d、-1的平方为1,1的算术平方根为1,故本选项错误.

故选b.

分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.

七年级青岛版数学教案【第六篇】

2?培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

重点和难点:正确地求出代数式的值。

一、从学生原有的认识结构提出问题。

1?用代数式表示:(投影)。

(1)a与b的和的平方;(2)a,b两数的平方和;。

(3)a与b的和的50%?

2?用语言叙述代数式2n+10的意义?

3?对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)。

若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

二、师生共同研究代数式的值的意义。

2?结合上述例题,提出如下几个问题:

(1)求代数式2x+10的值,必须给出什么条件?

(2)代数式的值是由什么值的确定而确定的?

(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

下面教师结合例题来引导学生归纳,概括出上述问题的答案?(教师板书例题时,应注意格式规范化)。

例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值?

解:当x=7,y=4,z=0时,

x(2x-y+3z)=7×(2×7-4+3×0)。

=7×(14-4)。

=70?

注意:如果代数式中省略乘号,代入后需添上乘号。

七年级青岛版数学教案【第七篇】

3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

数轴的概念和用数轴上的点表示有理数

教学过程(师生活动) 设计理念

设置情境

教师通过实例、课件演示得到温度计读数.

(多媒体出示3幅图,三个温度分别为零上、零度和零下)

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和处分别有一棵柳树和一棵杨树,汽车站西3 m和处分别有一棵槐树和一根电线杆,试画图表示这一情境.

(小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学。

教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

寻找规律

归纳结论

问题3:

1, 你能举出一些在现实生活中用直线表示数的实际例子吗?

3, 哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

4, 每个数到原点的距离是多少?由此你会发现了什么规律?

(小组讨论,交流归纳)

归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的`技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

教科书第12页练习

课堂小结

请学生总结:

1, 数轴的三个要素;

2, 数轴的作以及数与点的转化方法。

本课作业

1, 必做题:教科书第18页习题第2题

2,选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1, 数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2, 教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

3, 注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级青岛版数学教案【第八篇】

重点:邻补角与对顶角的概念。对顶角性质与应用。

难点:理解对顶角相等的性质的探索。

教学设计。

一、创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角。

在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

观察剪刀剪布的过程,引入两条相交直线所成的角。

学生观察、思考、回答问题。

二、认识邻补角和对顶角,探索对顶角性质。

1、学生画直线ab、cd相交于点o,并说出图中4个角,两两相配。

共能组成几对角?根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用。

几何语言准确表达;。

有公共的顶点o,而且的两边分别是两边的反向延长线。

2、学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?

(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)。

3学生根据观察和度量完成下表:

两条直线相交所形成的角分类位置关系数量关系。

教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?

4、概括形成邻补角、对顶角概念和对顶角的性质。

三、初步应用。

练习。

下列说法对不对。

(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角。

(2)邻补角是互补的两个角,互补的两个角是邻补角。

(3)对顶角相等,相等的两个角是对顶角。

学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象。

四。巩固运用例题:如图,直线a,b相交,,求的度数。

巩固练习。

教科书5页练习已知,如图,,求:的度数。

小结。

邻补角、对顶角。

作业课本p9—1,2p10—7,8。

相关推荐

热门文档

70 2285919