首页 > 学习资料 > 教案大全 >

北师大版七年级数学教案专业优推14篇

网友发表时间 3742560

北师大版七年级数学教案注重知识与能力的结合,通过多样化的教学活动激发学生兴趣,促进思维发展和应用能力提升。以下是阿拉网友为您整理的北师大版七年级数学教案专业优秀范例,供您学习参考,希望对您有帮助。

北师大版七年级数学教案专业

北师大版七年级数学教案 篇1

1.会比较两个小数的大小以及将几个小数按大小顺序排列。

2.在比较小数大小的过程中,发展推理能力。

会比较两个小数的大小以及将几个小数按大小顺序排列。

创设少年演讲比赛的情境,比较两个同学的得分谁的高一些。

1.小组讨论:和哪个数大,并说明自己是怎样想的。

2.汇报:通过全班的讨论明确,从数位来考虑,两个数的整数部分相同,就看十分位,十分位上大的那个数就大。

“张华比李明表现好,但不能得10分”让学生说说这句话的意思,明确张华的分数在和10之间。

让学生自己确定一个分数,然后将三个人的分数按顺序排列。

全班交流、归纳出比较小数大小的'方法。

第1题:先让学生在直线上找到和的位置,从直线图上很容易看出结果,体会到直线右边的数一定比左边的数大。

第4题:这个练习进一步加深学生对位值制的理解。让学生先独立思考几分钟,再在小组中交流各自的想法。

这个游戏有利于增进学生对小数相对大小的具体感受。不要求学生用小数减法计算出准确结果。

练一练第9页2、3。

北师大版七年级数学教案 篇2

2.初步培养学生观察、分析及概括的能力;。

3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议。

一、教学重点、难点。

重点:通过具体例子了解公式、应用公式.

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析。

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构。

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议。

1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例。

公式。

五、教具学具准备。

投影仪,自制胶片。

六、师生互动活动设计。

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

北师大版七年级数学教案 篇3

数学教研组龙从华。

一、指导思想。

本学期七年级数学教材是已经修改过的北师大版教材,主要以党的教育方针为指导思想。坚持以人为本,从学生实际出发,坚持从实践中来,到实践中去的哲学道理。不是单纯的为了教学而教育学生,而是要学生真正理解数学在现实生活中的实用价值,让数学服务于生活。

二、学生基本情况分析。

本期我担任七(2)数学教学工作。本班共有64名学生,通过小学的升学成绩来看,学生的数学成绩较好,不及格的同学较少;在学习习惯上,部分学生的不良习惯要得到纠正,良好的习惯要得到巩固,如独立思考,认真进行总结,及时改正作业,超前学习等,都应得到强化。在近日的学习中,后面的学生掌握的非常不好,可能是刚开学还没有完全适应过来,或初中知识比小学的难度大一些。总之,我会和孩子们共同努力,提高他们的学习能力和学习成绩。

三、教材分析。

本学期初一数学教学工作共分为六章。第一章:丰富的图形世界;第二章:有理数及其运算;第三章:整式及加减;第四章:基本平面图形;第五章;一元一次方程;第六章:数据的收集与整理。每一章各自的特点,都从各个方面培养了学生数学思考、问题解决等方面的能力。

四、教学目标。

4、在小学数学的基础上进一步研究线段、射线与现实生活的联系,积累对基本图形进行研究的数学活动经验。

5、学习一元一次方程的概念、解法和应用,充分感受方程的模型思想;

6、让学生经历调查的全过程,着重感受收集数据、整理和表示数据这两个环节。

五、教材的重点、难点。

1、利用图形来解决简单的实际问题。

2、认识并能字母表示算式,初步认识角并解决实际问题。

3、了解一元一次方程的“消元”思想初步理解化“未知”为“已知”和1。

化复杂问题为简单问题的化归思想。

4、培养学生的逻辑推理、逻辑思维能力和计算能力,培养学生的合作交流意识和实践创新能力。

六、提高教学质量的主要措施。

1、做好教学六认真工作。把教学六认真做为提高成绩的主要方法,认真研读新课程标准;认真钻研新教材,根据新课程标准,扩充教材内容;认真上课,批改作业;认真辅导,认真制作测试试卷,也让学生学会认真。

2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出相应的数学思考题,激发学生的兴趣。

3、开展丰富多彩的课外活动,课外调查,数学建模,野外测量,七巧板游戏,课件演示。使学生乐在其中,乐此不疲。

4、挖掘数学特长生,发展这部分学生的特长,使其冒尖。

5、以学生发展为本,注重学生个性的养成,潜能的开发,能力的培养和智力的发展。

6、在注重基础知识、基本技能的同时,注意培养学生自主学习的良好习惯,让学生全面发展。

7、在教学中注意既要使用好教材,又要走出教材,同社会实践相结合。

8、强调在实践中学习,在探索发现中学习,在合作交往中学习。

9、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。

10、关注学生的发展,关注学生学习的过程和方法,关注学生是通过什么样的方法来获得知识。注重学生的积极参与,关注学生会不会提问题,会不会思考,是不是在学习方法中获得情感体验。

11、关注学生富有个性的学习,提倡和鼓励学生以自己喜欢的方式进行学习,并且对学生学习的内容不做太多的限制。

12、转变过去只看学生测试成绩的评价制度,建立开放的、多元化的评价制度。

13、注重学生在研究性学习中的主动性和积极性,通过学生参与研究性学习的时间,次数,认真程度,行为表现等进行评价。

14、注重对学生在提出问题,解决问题过程中的表现极其对探究结果的表达来评价。

15、重在发现和肯定学生身上所蕴涵的潜能,所表现出来的闪光点,鼓励学生的一点小进步。

16、培养学生在实践活动中互相合作学习,根据态度和行为表现进行评价。

17、用哲理的高度,站在系统的高度,思如泉涌的精神状态,八方联系,浑然一体的学习方式,使学生学得松。成绩好,发展学生的素质。

七、教学进度安排。

北师大版七年级数学教案 篇4

平行公理及推论

(二)难点

平行线概念的理解

(三)解决办法

通过引导学生尝试发现新知、练习巩固的方法来解决

投影仪、三角板、自制胶片

1通过投影片和适当问题创设情境,引入新课

2通过教师引导,学生积极思维,进行反馈练习,完成新授

3学生自己完成本课小结

(-)明确目标

(二)整体感知

(三)教学过程

创设情境,引出课题

学生齐声答:不是

师:因此,平面内的两条直线除了相交以外,还有不相交的情形,这就是我们本节所要研究的内容(板书课题)

[板书]24平行线及平行公理

探究新知,讲授新课

师:在我们生活的周围,平面内不相交的情形还有许多,你能举例说明吗?

学生:窗户相对的棱,桌面的对边,书的对边……

师:我们把它们向两方无限延伸,得到的直线总也不会相交我们把这样的直线叫做平行线

[板书]在同一平面内,不相交的两条直线叫做平行线

教师出示投影片(课本第74页图2?17)

师:请同学们观察,长方体的棱与无论怎样延长,它们会不会相交?

学生:不会相交

师:那么它们是平行线吗?

学生:不是

师:也就是说平行线的定义必须有怎样的'前提条件?

学生:在同一平面内

师:谁能说为什么要有这个前提条件?

学生:因为空间里,不相交的直线不一定平行

教师在黑板上给出课本第73页图2

学生:两种相交和平行

由此师生共同小结:在同一平面内,两条直线的位置关系只有相交、平行两种

尝试反馈,巩固练习(出示投影)

1判断正误

(1)两条不相交的直线叫做平行线()

(2)有且只有一个公共点的两直线是相交直线()

(3)在同一平面内,不相交的两条直线一定平行()

(4)一个平面内的两条直线,必把这个平面分为四部分()

2下列说法中正确的是()

a在同一平面内,两条直线的位置关系有相交、垂直、平行三种

b在同一平面内,不垂直的两直线必平行

c在同一平面内,不平行的两直线必垂直

d在同一平面内,不相交的两直线一定不垂直

学生活动:学生回答,并简要说明理由

师:我们很容易画出两条相交直线,而对于平行线的画法,我们在小学就学过用直尺和三角板画,下面清同学在练习本上完成下面题目(投影显示)

已知直线和外一点,过点画直线

师:请根据语句,自己画出已知图形

学生活动:学生在练习本上画出图形

师:下面请你们按要求画出直线

注意:(1)在推动三角尺时,直尺不要动;

(2)画平行线必须用直尺三角板,不能徒手画

尝试反馈,巩固练习(出示投影)

1画线段,画任意射线,在上取、、三点,使,连结,用三角板画,,分别交于、,量出、、的长(精确到)

2读下列语句,并画图形

(1)点是直线外的一点,直线经过点,且与直线平行

(2)直线、是相交直线,点是直线、外的一点,直线经过点与直线平行与直线相交于

(3)过点画,交的延长线于

学生活动:学生思考并回答,能画,而且只能画一条

师:我们把这个结论叫平行公理,教师板书

【板书】平行公理:经过直线外一点,有且只有一条直线与这条直线平行

学生:思考后,立即回答,能画无数条

师:请同学们在练习本上完成

(出示投影)

已知直线,分别画直线、,使,

学生活动:学生在练习本上完成

师:请同学们观察,直线、能不能相交?

学生活动:观察,回答:不相交,也就是说

师:为什么呢?同桌可以讨论

学生活动:学生积极讨论,各抒己见

学生活动:教师让学生积极发表意见,然后给出正确的引导

师:我们观察图形,如果直线与相交,设交点为,那么会产生什么问题呢?请同学们讨论

学生活动:学生在教师的启发引导下思考、讨论,得出结论

[板书]如果两条直线都和第三条直线平行,那么这两条直线也互相平行

学生活动:学生思考,回答:不对,给出反例图形,

例如:如图1所示,射线与就不相交,也不平行

师:同学们想一想,当我们说两条射线或线段平行时,实际上是什么平行才可以呢?

生:它们所在的直线平行

尝试反馈,巩固练习(投影)

北师大版七年级数学教案 篇5

2.通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;。

3.通过加法运算练习,培养学生的运算能力。

教学建议。

(一)重点、难点分析。

本节课的重点是依据运算法则和运算律准确迅速地进行,难点是省略加号与括号的代数和的计算.

由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.

(二)知识结构。

(三)教法建议。

1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.

2.关于“去括号法则”,只要学生了解,并不要求追究所以然.

-3-4表示-3、-4两数的代数和,

-4+3表示-4、+3两数的代数和,

3+4表示3和+4的代数和。

等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

4.先把正数与负数分别相加,可以使运算简便。

5.在交换加数的位置时,要连同前面的符号一起交换。如。

12-5+7应变成12+7-5,而不能变成12-7+5。

北师大版七年级数学教案 篇6

本节教学的重点是掌握单项式与多项式相乘的法则.难点是正确、迅速地进行单项式与多项式相乘的计算.本节知识是进一步学习多项式乘法,以及乘法公式等后续知识的基础。

1.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,即。

其中,可以表示一个数、一个字母,也可以是一个代数式.。

2.利用法则进行单项式和多项式运算时要注意:

3根据去括号法则和多项式中每一项包含它前面的符号,来确定乘积每一项的`符号;

设m=-4x2,a=2x2,b=3x,c=-1,

∴(-4x2)·(2x2+3x-1)。

=m(a+b+c)。

=ma+mb+mc。

=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)。

=-8x4-12x3+4x2.。

这样过渡较自然,同时也渗透了一些代换的思想.。

教学设计示例。

一、教学目标。

1.理解和掌握单项式与多项式乘法法则及推导.。

2.熟练运用法则进行单项式与多项式的乘法计算.。

3.培养灵活运用知识的能力,通过用文字概括法则,提高学生数学表达能力.。

4.通过反馈练习,培养学生计算能力和综合运用知识的能力.。

5.渗透公式恒等变形的数学美.。

二、学法引导。

1.教学方法:讲授法、练习法.。

类项,故在学习中应充分利用这种方法去解题.。

三、重点·难点·疑点及解决办法。

(一)重点。

单项式与多项式乘法法则及其应用.。

(二)难点。

单项式与多项式相乘时结果的符号的确定.。

(三)解决办法。

复习单项式与单项式的乘法法则,并注意在解题过程中将单项式乘多项式转化为单项。

式乘单项式后符号确定的问题.。

四、课时安排。

一课时.。

五、教具学具准备。

投影仪、胶片.。

六、师生互动活动设计。

(一)明确目标。

本节课重点学习单项式与多项式的乘法法则及其应用.。

(二)整体感知。

(三)教学过程。

1.复习导入。

复习:

(1)叙述单项式乘法法则.。

(单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.)。

(2)什么叫多项式?说出多项式的项和各项系数.

2.探索新知,讲授新课。

简便计算:

由该等式,你能说出单项式与多项式相乘的法则吗?单项式与多项式乘法法则:单项式。

与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.。

例1计算:

例2化简:

练习:错例辨析。

(2)错在单项式与多项式的每一项相乘之后没有添上加号,故正确答案为。

(四)总结、扩展。

(99,河北)下列运算中,不正确的为()。

a.b.。

c.d.。

八、布置作业。

参考答案:

北师大版七年级数学教案 篇7

比较正数和负数的大小。

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

负数与负数的比较。

一、复习:

1、读数,指出哪些是正数,哪些是负数?

—85。6+0。9—+0—82。

2、如果+20%表示增加20%,那么—6%表示。

二、新授:

(一)教学例3:

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)。

2、出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

a、从0起往右依次是?从0起往左依次是?你发现什么规律?

(7)练习:做一做的第1、2题。

(二)教学例4:

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“—8在—6的左边,所以—8〈—6”

5、再通过让另一学生比较“8〉6,但是—8〈—6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,所有的负数都在0的'左边,也就是负数都比0小,而正数比0大,负数比正数小。

7、练习:做一做第3题。

三、巩固练习。

1、练习一第4、5题。

2、练习一第6题。

3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。

四、全课总结。

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

第二课教学反思:

许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

例3——两个不同层面的拓展:

1、在数轴上表示数要求的拓展。

数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1。5。建议此处教师补充要求学生表示出“+1。5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1。5和—1。5绝对值相等。同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

2、渗透负数加减法。

教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

例4——薄书读厚、厚书读薄。

薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)。

例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。

将厚书读薄——无论哪种类型,比较方法万变不离其宗。

无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“86,所以—8—6”来阐述其原因,其实也与数轴相关。因为当绝对值越大时,表示离原点的距离越远,那么在数轴上表示的点也就在原点左边越远,数也就越小。所以,抓住精髓就能以不变应万变。

在此,我还补充了—3/7和—2/5比较大小的练习,提升学生灵活应用知识解决实际问题的能力。

北师大版七年级数学教案 篇8

2?培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

重点和难点:正确地求出代数式的值。

一、从学生原有的认识结构提出问题。

1?用代数式表示:(投影)。

(1)a与b的和的平方;(2)a,b两数的平方和;。

(3)a与b的和的50%?

2?用语言叙述代数式2n+10的意义?

3?对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)。

若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

二、师生共同研究代数式的值的意义。

2?结合上述例题,提出如下几个问题:

(1)求代数式2x+10的值,必须给出什么条件?

(2)代数式的值是由什么值的确定而确定的?

(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

下面教师结合例题来引导学生归纳,概括出上述问题的答案?(教师板书例题时,应注意格式规范化)。

例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值?

解:当x=7,y=4,z=0时,

x(2x-y+3z)=7×(2×7-4+3×0)。

=7×(14-4)。

=70?

注意:如果代数式中省略乘号,代入后需添上乘号。

北师大版七年级数学教案 篇9

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;。

3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

正确分析实际问题中的不等关系,列出不等式组。

建立不等式组解实际问题的数学模型。

出示教科书第145页例2(略)。

问:(1)你是怎样理解“不能完成任务”的数量含义的?

(2)你是怎样理解“提前完成任务”的数量含义的?

(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

师生一起讨论解决例2.

1、教科书146页“归纳”(略).

2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?

在讨论或议论的基础上老师揭示:

步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

北师大版七年级数学教案 篇10

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)。

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有-的新数。

北师大版七年级数学教案 篇11

教学目标。

1.通过实验观察描述根的生长和枝条发育的过程。

2.初步学会运用测量的方法探究根生长最快的部位。

3.运用调查、访谈等的方法与他人交流,了解无机盐与植物生长的关系。

4.通过植株生长过程的学习向学生渗透事物发展变化的观点。

重点和难点。

1.测量数据的方法、数据的分析和处理。

2.根尖临时装片的制作及观察。

教学设计。

根靠根尖向前生长。

方案一:课外小组的同学展示并描述2种根靠根尖向前生长的演示实验的结果,汇报本组探究根尖生长的实验方案,包括如何选材和画线、观察记录、结果分析等。

方案二:课外小组的同学在实物投影上展示并描述2种根靠根尖向前生长的演示实验的结果,汇报本组探究根尖生长的实验方案,如何选材和画线,观察记录、结果分析等。

方案三:生物课外小组的同学在实物投影上向全班展示切去根尖的幼根不向前生长,而未切去根尖的幼根却伸得很长。

根生长最快的部位:伸长区。

方案一:各小组汇报交流测量的结果。讨论:(1)各小组的测量数据出现差异的原因?如何处理?(2)如果探究活动只有你一个人做,只用一株幼苗够不够?为什么?互相交流,解答疑惑。

方案二:各小组以实验报告的形式,汇报交流各组探究的结果,并进行分析讨论,各组之间进行评议。评议内容包括:设计是否合理、装置是否简便易行、步骤是否严谨、记录是否详实、结果分析是否科学等。

根的生长:

(1)分生区:增加细胞的数量。(2)伸长区:增大细胞体积。

方案一:透过培养皿的玻璃,观察餐巾纸下面白色的根及毛茸茸的根毛,根尖顶端_发亮的是根冠,再用显微镜观察根尖的纵切片。

方案二:观察培育的幼根后,动手制作根尖的临时装片,低倍显微镜下观察根尖的4部分。

方案三:观察培育的幼根后,动手制作根尖的临时装片,低倍显微镜观察,记录观察的结果。在此基础上观察根尖永久纵切片。

方案四:观察根尖的结构挂图,区分根尖的4部分细胞的数量和体积的大小。

提出观察的提纲,引导学生实验观察后找出很伸长最快的部位。

枝条是芽发育成的。

方案一:观察动态展示芽发育成枝条过程的cai课件,并进行描述。

方案二:演示抽拉活动教具,使抽象问题具体化并仔细观察,最后概括描述出芽发育成枝条的过程。

方案三:观察教师板画的芽发育成枝条的相对应结构示意图,并进行描述。

方案四:先观察动态展示芽发育成枝条的过程的cai课件,然后在黑板上将叶芽的各分与发育成枝条的相应部分的图用粉笔连接起来。

提出问题,引导观察和探究。

用彩色粉笔在黑板上画出芽的结构及相应的枝条图。提供叶芽的结构和枝条的图各一幅,组织学生连出相对应部分。

植株的生长需要无机盐:

1.需要量最多的是含氮的、含磷的、含钾的无机盐。

2.缺少无机盐时的症状:

3.合理施肥的意义。

方案一:观察甲、乙、丙、丁4瓶中分别培养的菜豆正常叶和缺少氮、磷、钾的叶片,描述现象并诊断病因。

方案二:观察生长正常的叶和缺少氮、磷、钾的叶片的录像,描述现象并诊断病因。

方案三:看书自学,观察教师出示的几株幼苗,进行诊断,鉴别幼苗的病因。

方案四:观察课本插图,进行描述,联系实际分析生活中的现象。

分析生活中的各种做法,树立环保的的意识。

北师大版七年级数学教案 篇12

1.了解算术平方根的概念,会求正数的算术平方根并会用符号表示。

2.会用计算器求算术平方根。

3.了解无限不循环小数的特点。

数学思考。

1.通过学习算术平方根,建立初步的数感和符号感,发展抽象思维。

2.通过探究的大小,培养学生估算意识,了解两个方向无限逼近的数学思想。

解决问题。

1.通过拼大正方形的活动,体现解决问题方法的多样性,发展形象思维。

2.在探究活动中,学会与人合作,并能与他人交流思维的过程和探究的结果。

情感态度。

1.通过学习算术平方根,认识数学与人类生活的密切联系。

2.通过探究活动,锻炼克服困难的意志,建立自信心,提高学习热情。

重点:算术平方根的概念,感受无理数。

难点:探究的大小的过程。

活动1创设情景,引入算术平方根。

2003年10月16日,我国进行首次载人航天飞行取得圆满成功。中华民族探索太空的千年梦想实现了。宇宙在脱离地球轨道进入正常运行轨道的速度要满足一个条件,即介于第一宇宙速度与第二宇宙速度之间,第一宇宙速度和第二宇宙速度分别满足:第一宇宙速度v1(米/秒):,第二宇宙速度v2(米/秒):

小欧还要准备一些面积如下的正方形画布,请你帮他把这些正方形的边长都算出来:

面积191636。

边长1346。

上面的问题,实际上是已知一个正数的平方,求这个正数的'问题。

一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,a的算术平方根记为,读作“根号a”,a叫做“被开方数”。

规定:0的算术平方根是0。

活动2通过一些简单例题,进一步了解算术平方根。

1、你能求出下列各数的算术平方根吗?

2、请同学们同桌之间合作,一位同学说一个正数,另一位同学说出这个正数的算术平方根。

3、16的算术平方根等于________。

4、的值等于_________。

5、的算术平方根等于_________。

活动3动动脑,动动手,探究的大小。

你能用两个面积为单位1的小正方形拼成一个大正方形吗?

回答下列问题。

(1)你所得的新正方形的面积是多少?

(2)新正方形的边长是多少?

讨论:

你知道有多大吗?

的估算:

如此进行下去,可以得到的近似值,还可以发现是一个无限不循环小数。

活动4财富大统计。

你认为小欧要解决他参加美术作品比赛中遇到的问题。

北师大版七年级数学教案 篇13

3.培养学生的观察、归纳与概括的能力.

重点:理解的意义,理解的代数定义与几何定义的一致性.

难点:多重符号的化简.

一、从学生原有的认知结构提出问题

二、师生共同研究的定义

特点?

引导学生回答:符号不同,一正一负;数字相同.

像这样,只有符号不同的两个数,我们说它们互为,如+5与

应点有什么特点?

引导学生回答:分别在原点的两侧;到原点的距离相等.

这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.

的是0.

这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.

三、运用举例 变式练习

例1 (1)分别写出9与-7的;

例1由学生完成.

在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?

引导学生观察例1,自己得出结论:

数a的是-a,即在一个数前面加上一个负号即是它的

1.当a=7时,-a=-7,7的是-7;

2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.

3.当a=0时,-a=-0,0的是0,因此,-0=0.

么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的;

例2 简化-(+3),-(-4),+(-6),+(+5)的符号.

能自己总结出简化符号的规律吗?

括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.

课堂练习

1.填空:

(1)+的是______; (2)-3的是______;

(5)-(+4)是______的; (6)-(-7)是______的

2.简化下列各数的符号:

-(+8),+(-9),-(-6),-(+7),+(+5).

3.下列两对数中,哪些是相等的数?哪对互为?

-(-8)与+(-8);-(+8)与+(-8).

四、小结

指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义――代数定义与几何定义;二是求a的;三是简化多重符号的问题.

五、作业

1.分别写出下列各数的:

2.在数轴上标出2,-,0各数与它们的

3.填空:

(1)-是______的,______的是-

4.化简下列各数:

5.填空:

(3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.

教学过程 是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.

探究活动

有理数a、b在数轴上的位置如图:

将a,-a,b,-b,1,-1用“”号排列出来.

解:在数轴上画出表示-a、-b的点:

点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.

北师大版七年级数学教案 篇14

拓展视野。

(四)板书设计。

酶与酶促反应。

一、什么是酶。

1、定义要点。

活细胞产生有催化活性特殊有机物。

2、化学本质。

蛋白质或核糖核酸。

二、酶促反应。

1、主要专有名词:

酶促反应酶活性酶的特性(高效性、专一性)。

酶活性中心底物。

2、酶在酶促反应中的作用方式:

酶的活性中心与底物特定部位结合。

3、影响酶促反应效率(酶活性)的因素:

ph值温度酶浓度底物浓度。

五、教学评价:本教学设计有以下四个特点。

实践性:给学生提供实践机会;。

自主性:主动思考与实验探究的自主选择。

联系性:不只局限于课堂,鼓励学生联系社会和使用课外素材;。

直观性:实验现象直观。

六、教学反思。

效果:1、教学目标基本实现。

2、体现学生主体,实验探究得以实现。

3、开放的知识结构,扩大了学生视野。

局限:学生的实验技能、知识面及时间等限制了教学效果。

相关推荐

热门文档

20 3742560