首页 > 学习资料 > 小学教案 >

六年级数学教案(优质4篇)

网友发表时间 3428504

【阅读指引】阿拉题库网友为您分享整理的“六年级数学教案(优质4篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

六年级数学教案【第一篇】

教学目标

1、使学生掌握分数、小数四则混合运算的运算顺序及计算方法,并能正确地进行计算。

2、训练学生认真审题,能够选择合理简便的解题方法。

3、培养学生良好的学习习惯及正确、合理、灵活、迅速的运算能力。

教学重点和难点

教学重点:掌握分数、小数四则混合运算的运算顺序,并且能根据不同的情况选用不同的方法进行计算。

教学难点:灵活、合理地运用不同的方法进行计算。

教学过程设计

(一)复习

1、第74页第1题。

(1)把下面的小数化成分数:

(2)把下面的分数化成小数:

以上各题用投影片出示,指名口答。

2、我们已经知道,分数、小数加减混合运算,可以根据已知数的具体情况来确定是先把分数化成小数,还是先把小数化成分数,从而进行计算。

下面各题用什么方法进行计算比较简单?

提问:分数、小数加减混合运算一般情况下化成什么数做比较简便?为什么?

提问:分数和小数乘、除混合运算在一般情况下,化成什么数做比较简便?为什么?(第三种方法最简便,但这种做法只有小数能够被分数的分母除尽时才最方便,一般情况下分数、小数乘除混合运算把小数化成分数来做比较简便。)

(二)学习新课

以上这些计算方法是我们进行分数、小数四则混合运算的基本方法。

(板书课题:分数、小数四则混合运算)

(1)小组讨论:这道题怎样计算比较简便?(把小数化成分数计算比较简便。)

(2)全体同学在练习本上试做,通过试做,体会一下为什么用这种方法进行计算简便?

(3)订正,并且说说这种做法有什么好处?(因为计算分数乘、除法时,有时可以先约分再计算比较简便,所以,分数、小数乘除混合运算一般先把小数化成分数后再计算。)

(1)审题:例5与例4有什么不同之处?

(例4是分数、小数乘、除混合运算,例5是分数,小数四则混合运算。)

(2)想一想,做这道题的时候,我们应该注意些什么?(a.运算顺序;b.选择合理恰当的方法。)

(3)小组讨论:这道题是把小数化成分数算简便,还是把分数化成小数算简便?(把小数化成分数计算比较简便。)

(4)全体同学在练习本上试做。

(5)订正。

(6)小结:我们把题目中的小数都化成了分数,这样在乘除过程中,有时可以先约分,使得做起来比较简便,同时得到的是一个准确的结果。

(7)如果计算的结果允许取近似值,也可以先把分数化成小数,取它们的近似值进行计算。在本册教材中,一般要求只取两位小数,这种算法在现在电子计算机越来越被广泛使用的社会里是很有价值的,因为,大多数电子计算机都是用小数来计算的。请你用这种方法试做这道题:

≈÷-×(注意:这一步用“≈”)

=-

=

订正此题,并且教师要强调:如果计算的结果允许取近似值,才可以把分数化成小数来计算。

3、小结。

两位同组的同学互相说一说:

(1)分数、小数乘、除混合运算,怎样计算比较简便?

(2)分数、小数四则混合运算,又怎样计算简便?

看书质疑。

(三)巩固反馈

采用分小组巩固练习的形式。

1、用题板做练习,大面积反馈。

举题板订正,再把两种不同的计算方法进行比较:

不难看出,第二种方法更简便一些。所以解题方法不是一成不变的,还要根据题目的具体情况,如数的特征、运算符号等决定怎样做简便就怎样做,故在掌握了一般方法的基础上,还要灵活运用。

2、互相帮助:1,3,5组同学做题(1);2,4,6组同学做题(2)。之后,同桌同学交换检查,指出错误,加以改正,使学生掌握检查的方法,并养成检查的习惯。

教师出示正确答案,哪组的同学都做对了就给予表扬。

3、全体同学齐做。

把题中的分数化成小数后再计算。(保留两位小数。)

≈13×-÷

=-

=

(四)课堂总结

小学数学六年级教案【第二篇】

教学目标

1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。

2.会正确地读、写正、负数,知道0既不是正数,也不是负数。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。

教学重点

负数的意义和负数的读法与写法。

教学难点

理解0既不是正数,也不是负数。

教学过程

一、激发兴趣,导入新课

游戏:《我变,我变,我变变变》

老师说一句话,请同学们说出一句和它意思相反的话。

二、创设情境、学习新知

1.教学例1。

(1)课件出示:中央电视台天气预报的一个场面:哈尔滨零下6摄氏度至3摄氏度。

你能用自己的方法来表示这两个温度吗?

学生思考后反馈,教师适时点拨、评价和引导。

教师小结:

(2)巩固练习。

同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。

学生独立完成第123页下图的练习。

教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。

2.自主学习例2。

教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。今天,老师带来了一张珠穆朗玛峰的海拔图,请看。(课件演示珠穆朗玛峰的海拔图,课本第124页上图的左部分,数字前没有符号)从图上你看懂了些什么?

引导学生交流:珠穆朗玛峰比海平面高米。

我们再来看新疆的吐鲁番盆地的海拔图。(课件演示吐鲁番盆地的海拔情况,课本第124页上图的右部分,数字前没有符号)你又能从图上看懂些什么呢?

引导学生交流:吐鲁番盆地比海平面低155米。

教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?

学生交流:珠穆朗玛峰的海拔可以记作:+米或米。吐鲁番盆地的海拔可以记作:-155米。(板书)

教师追问:你是怎么想到用这种方法来记录的呢?

教师小结:以海平面为界线,+米或米这样的数表示比海平面高米;-155米这样的数表示比海平面低155米。

(2)巩固练习:课本第124页试一试。

教师巡视,集体订正。

3.小组讨论,归纳正数和负数。

教师:通过刚才的学习,我们收集到了一些数据,(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?

学生交流、讨论。

指出:因为+米也可以写成米,所以有正号和没正号都可以归于一类。

提出疑问:0到底归于哪一类?引导学生争论,各自发表意见。

小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、 3、+等这样的数叫做正数;像-6、-155等这样的数叫做负数;而0既不是正数,也不是负数。(板书)

通常正号可以省略不写,负号可以不写吗? 为什么?

三、巩固练习,深化认识

1.课堂活动:1、2题。

①读一读,议一议。

学生齐读,巩固负数的读法。

②根据题中的信息,说一说三个班的答题情况。

学生讨论交流,并说出理由。

2.练习二十五:1、3题。

独立练习,反馈交流。

四、联系生活,拓展运用

说一说:生活中哪些地方还会用到负数。

六年级数学教案【第三篇】

教学目标

使学生认识圆柱的特征,认识圆柱侧面的展开图。

教学准备

教师与学生每人带一个圆柱,教师给学生每4人小组发一个纸制的圆柱。每位学生准备好制作圆柱的材料。

教学重点

使学生认识圆柱的特征。

教学难点

理解圆柱侧面展开是长方形,并理解长与宽与圆柱之间的关系。

教学过程:

一、复习

我们已经认识了长方体和正方体。

谁能说一说长方体的特征?(长方体是由6个长方形围成的,相对的。两个长方形完全相同,长方体的高有无数条。)正方体呢?

谁能说一说我们学习了长方体和正方体的哪些知识?

二、 新授

教师:今天老师和大家一起学习一种新的立体图形:圆柱体,简称圆柱。

1、 初步印象

教师:同学们,请你们用眼睛看,用手摸,说一说圆柱与长方体的有什么不同?

(圆柱是由2个圆,1个曲面围成的。)

2、 小组研究:圆柱的这些面有什么特征呢?面与面之间又有什么联系呢?

3、 交流和汇报

(1)关于两个圆形得出:上下2个圆是完全相等的圆,它们都是圆柱的底面。

(2)关于曲面得出:它是圆柱的侧面,如果沿着高展开,可以得到一个长方形或正方形,如果沿着斜线展开可以得到一个平行四边形。展开后的长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

(3)关于圆柱的高:两个底面之间的距离叫圆柱的高。高有无数条。高有时也可用长、厚、深代替。

4、 举例说明进一步明确特征

六年级数学教案【第四篇】

教学目标:

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

3、渗透转化思想,培养学生的自主探索意识。

教学重点:

掌握圆柱体积的计算公式。

教学难点:

圆柱体积的计算公式的推导。

教学过程:

一、复习

1、长方体的体积公式是什么?正方体呢?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

师小结:圆的面积公式的推导是利用转化的思想把一个曲面图形转化成以前学的长方形,今天我们学习圆柱体体积公式的推导也要运用转化的思想同学们猜猜会转化成什么图形?

二、新课

1、圆柱体积计算公式的推导。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)

(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?

长方体和圆柱体的底面积和体积有怎样的关系?

学生说演示过程,总结推倒公式。

(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)

2、教学补充例题(删掉)

(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是米。它的体积是多少?

(2)指名学生分别回答下面的问题

①这道题已知什么?求什么?

②能不能根据公式直接计算?

③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

(3)出示下面几种解答方案,让学生判断哪个是正确的

①V=Sh

50×=105(立方厘米)

答:它的体积是105立方厘米。

②米=210厘米

V=Sh

50×210=10500(立方厘米)

答:它的体积是10500立方厘米。

③50平方厘米=平方米

V=Sh

×=(立方米)

答:它的`体积是立方米。

④50平方厘米=平方米

V=Sh

×=(立方米)

答:它的体积是立方米。

先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.(删掉)

(4)做第20页的“做一做”。

学生独立做在练习本上,做完后集体订正.

出示一组习题

一个圆柱的半径4厘米,高3厘米,体积是多少立方厘米?

一个圆柱的直径12厘米,高3厘米,体积是多少立方厘米?

一个圆柱的周长厘米,高3厘米,体积是多少立方厘米?

3、引导思考:如果已知圆柱底面半径,直径,和底面周长和高,圆柱体积的计算公式是怎样的?

4、教学例6

(1)出示例,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)(删掉)

(2)学生尝试完成例6。

①杯子的底面积:×(8÷2)2=×42=×16=(cm2)

②杯子的容积:×10=(cm3)=(ml)

(3)学生见解例题,师补充

三、巩固练习

1、一个圆柱形水桶底面直径是56厘米,高87厘米,水桶装多少水?

2、一个圆柱的体积是80立方厘米,底面积是16平方厘米,它的高是多少厘米?

3、一个圆柱形粮囤,从里面量得底面半径是米,高是2米。如果每立方米约中750千克,这个粮囤能装多少吨玉米?

4、钢管的长80厘米,外直径10厘米,内直径8厘米,求它的体积。

板书设计:

圆柱的体积=底面积×高V=Sh或V=πr2h

例6:

①杯子的底面积:×(8÷2)2=×42=×16=(cm2)

②杯子的容积:×10=(cm3)=(ml)

教学反思:

以旧引新,培养学生的自主学习能力。加强直观操作,培养学生的动手操作能力。利用“转化思想”的方法把圆柱转化成近似的长方体,通过小组合作实验推导出圆柱体积的计算方法,使学生在操作中感知,在观察中理解,在比较中归纳,发展了学生的空间观念,培养了学生的动手能力和合作能力。

相关推荐

热门文档

16 3428504